Ridges, crets an sub-parabolic lines of evolving surfaces (1996)
- Authors:
- Autor USP: TARI, FARID - ICMC
- Unidade: ICMC
- DOI: 10.1007/bf00123141
- Subjects: GEOMETRIA; SINGULARIDADES
- Language: Inglês
- Source:
- Título do periódico: International Journal of Computer Vision
- Volume/Número/Paginação/Ano: v.18, n.3 , p.195-210, 1996
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BRUCE, J W e GIBLIN, P J e TARI, Farid. Ridges, crets an sub-parabolic lines of evolving surfaces. International Journal of Computer Vision, v. 18, n. 3 , p. 195-210, 1996Tradução . . Disponível em: https://doi.org/10.1007/bf00123141. Acesso em: 08 set. 2024. -
APA
Bruce, J. W., Giblin, P. J., & Tari, F. (1996). Ridges, crets an sub-parabolic lines of evolving surfaces. International Journal of Computer Vision, 18( 3 ), 195-210. doi:10.1007/bf00123141 -
NLM
Bruce JW, Giblin PJ, Tari F. Ridges, crets an sub-parabolic lines of evolving surfaces [Internet]. International Journal of Computer Vision. 1996 ;18( 3 ): 195-210.[citado 2024 set. 08 ] Available from: https://doi.org/10.1007/bf00123141 -
Vancouver
Bruce JW, Giblin PJ, Tari F. Ridges, crets an sub-parabolic lines of evolving surfaces [Internet]. International Journal of Computer Vision. 1996 ;18( 3 ): 195-210.[citado 2024 set. 08 ] Available from: https://doi.org/10.1007/bf00123141 - Parabolic curves of evolving surfaces
- Extrema of principal curvature and symmetry
- Projections of surfaces in 'R POT.4' to 'R POT.3' and the geometry of their singular images
- Families of surfaces: focal sets, ridges and umbilics
- On families of square matrices
- On the differential geometry of holomorphic plane curves
- Implicit differential equations from the singularity theory viewpoint
- Families of surfaces: height functions and projections to planes
- Families of surfaces in 'IR POT. 4'
- On vertices and inflections of plane curves
Informações sobre o DOI: 10.1007/bf00123141 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas