Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models (2017)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1007/s10107-016-1065-8
- Subjects: OTIMIZAÇÃO NÃO LINEAR; OTIMIZAÇÃO IRRESTRITA
- Keywords: Nonlinear optimization; Unconstrained optimization; Evaluation complexity; High-order models; Regularization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2017
- Source:
- Título: Mathematical Programming
- ISSN: 0025-5610
- Volume/Número/Paginação/Ano: v. 163, n. 1-2, p. 359-368, 2017
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg et al. Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Mathematical Programming, v. 163, n. 1-2, p. 359-368, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10107-016-1065-8. Acesso em: 20 jan. 2026. -
APA
Birgin, E. J. G., Gardenghi, J. L., Martínez, J. M., Santos, S. A., & Toint, P. L. (2017). Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Mathematical Programming, 163( 1-2), 359-368. doi:10.1007/s10107-016-1065-8 -
NLM
Birgin EJG, Gardenghi JL, Martínez JM, Santos SA, Toint PL. Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [Internet]. Mathematical Programming. 2017 ; 163( 1-2): 359-368.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1007/s10107-016-1065-8 -
Vancouver
Birgin EJG, Gardenghi JL, Martínez JM, Santos SA, Toint PL. Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [Internet]. Mathematical Programming. 2017 ; 163( 1-2): 359-368.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1007/s10107-016-1065-8 - Evaluating bound-constrained minimization software
- Low order-value approach for solving VaR-constrained optimization problems
- Optimality properties of an Augmented Lagrangian method on infeasible problems
- Local convergence of an inexact-restoration method and numerical experiments
- A PDE-informed optimization algorithm for river flow predictions
- A concise and friendly introduction to the analysis of algorithms for continuous nonlinear optimization
- Shape optimization for covering problems
- On regularization and active-set methods with complexity for constrained optimization
- Second-order negative-curvature methods for box-constrained and general constrained optimization
- Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization
Informações sobre o DOI: 10.1007/s10107-016-1065-8 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2839206.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
