Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction (2016)
- Authors:
- Autor USP: CORREIA, PAULO ROGÉRIO MIRANDA - EACH
- Unidade: EACH
- DOI: 10.1039/c6rp00069j
- Subjects: MAPAS CONCEITUAIS; QUÍMICA; ENSINO E APRENDIZAGEM
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Chemistry Education Research and Practice
- ISSN: 1109-4028
- Volume/Número/Paginação/Ano: v. 17, p. 756-765, 2016
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
AGUIAR, Joana Guilares de; CORREIA, Paulo Rogério Miranda. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction. Chemistry Education Research and Practice, Cambridge, v. 17, p. 756-765, 2016. Disponível em: < http://dx.doi.org/10.1039/c6rp00069j > DOI: 10.1039/c6rp00069j. -
APA
Aguiar, J. G. de, & Correia, P. R. M. (2016). Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction. Chemistry Education Research and Practice, 17, 756-765. doi:10.1039/c6rp00069j -
NLM
Aguiar JG de, Correia PRM. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction [Internet]. Chemistry Education Research and Practice. 2016 ; 17 756-765.Available from: http://dx.doi.org/10.1039/c6rp00069j -
Vancouver
Aguiar JG de, Correia PRM. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction [Internet]. Chemistry Education Research and Practice. 2016 ; 17 756-765.Available from: http://dx.doi.org/10.1039/c6rp00069j - Estudo sobre a estrutura gráfica dos mapas conceituais: em busca da aprendizagem significativa no ensino de ciências
- From representing to modelling knowledge: proposing a two-step training for excellence in concept mapping
- Estudo sobre a natureza estática ou dinâmica das proposições em mapas conceituais sobre bioética
- Using worked example to teach the role of focus question: building conceptual understanding about concept mapping
- Mapas conceituais como ferramenta de avaliação: desafios e possibilidades de mudanças na sala de aula
- The use of concept maps for knowledge management: from classrooms to research labs
- Is a concept mapping with errors useful to evaluate learning outcomes?: a study on declarative knowledge and reading strategy using eye-tracking
- Um treinamento em duas etapas visando à certificação de mapeadores excelentes: da representação à modelagem de conhecimento
- Compulsory concept as instructional strategy to identify limited or inappropriate propositional hierarchies in concept maps
- Mapas conceituais no ensino de ciências: avaliando como os alunos articulam diferentes materiais instrucionais
Informações sobre o DOI: 10.1039/c6rp00069j (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Aguiar J. G., Cicuto C. A. T. and Correia P. R. M., (2014), How can we prepare effective concept maps? Training procedures and assessment tools to evaluate mappers proficiency, J. Sci. Educ., 15(1), 12–19 |
---|
Ainsworth S., (2006), A conceptual framework for considering learning with multiple representations, Learn. Instr., 16(3), 183–198 |
Amadieu F., van Gog T., Paas F., Tricot A. and Mariné C., (2009), Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning, Learn. Instr., 19(5), 376–386 |
Ausubel D. P., (2000), The acquisition and retention of knowledge: a cognitive view, Kluwer Academic Publishers |
Burrows N. L. and Mooring S. R., (2015), Using concept mapping to uncover students' knowledge structures of chemical bonding concepts, Chem. Educ. Res. Pract., 16(1), 53 |
Cañas A. J., Novak J. D. and Reiska P., (2015), How good is my concept map? Am I a good Cmapper? Knowl. Manage. E-Learn., 7(1), 6–19 |
Cardellini L., (2012), Chemistry: why the subject is difficult? Educ. Quím., 23(2), 305–310 |
Carlson R., Chandler P. and Sweller J., (2003), Learning and understanding science instructional material, J. Educ. Psychol., 95(3), 629–640 |
Chi M. T. H., (2005), Common sense conceptions of emergent processes: Why some misconceptions are robust, J. Learn. Sci., 14(2), 161–199 |
Cress U. and Knabel O. B., (2003), Previews in hypertexts: effects on navigation and knowledge acquisition, J. Comput. Assisted Learn., 19(4), 517–527 |
Cros D., Maurin M., Amouroux R., Chastrette M., Leber J. and Fayol M., (1986), Conceptions of first-year university students of the constituents of matter and the notions of acids and bases, Eur. J. Sci. Educ., 8(3), 305–313 |
De Jong T., (2010), Cognitive load theory, educational research, and instructional design: some food for thought, Instr. Sci., 38(2), 105–134 |
Derbentseva N. and Kwantes P., (2014), Cmap readability: propositional parsimony, map layout and semantic clarity and flow. Concept Mapping for Learning and Innovation, in Correia P. R. M., Infante-Malachias M. E., Cañas A. J. and Novak J. D. (ed.) Proceedings of the Sixth International Conference on Concept Mapping, Santos, Brazil |
Driver R., Asoko H., Leach J., Mortimer E. and Scott P., (1994), Constructing scientific knowledge in the classroom, Educ. Res., 23(7), 5–12 |
Gabel D., (1999), Improving Teaching and Learning through Chemistry Education Research: A Look to the Future, J. Chem. Educ., 76(4), 548–554, 1999 |
Gabel D. L., Samuel K. V. and Hunn D., (1987), Understanding the particulate nature of matter, J. Chem. Educ., 64, 695–697 |
Galloway K. R. and Bretz S. L., (2015), Measuring meaningful learning in the undergraduate general chemistry and organic chemistry laboratories: a longitudinal study, J. Chem. Educ., 92(12), 2019–2030 |
Gilbert, J. K., (1997), Exploring models and modeling in science and technology education, The University of Reading, the New Bulmershe Papers |
Griffiths A. K. and Preston K. R., (1992), Grade 12 students' misconceptions relating to fundamental characteristics of atoms and molecules, J. Res. Sci. Teach., 29(6), 611–628 |
Hagemans M. G., van der Meij H. and de Jong T., (2013), The effects of a concept map-based support tool on simulation-based inquiry learning, J. Educ. Psychol., 105(1), 1–24 |
Hall R. H. and Sidio-Hall M. A., (1994a), The effect of color enhancement on knowledge map processing, J. Exp. Educ., 62(3), 209–217 |
Hall R. H. and Sidio-Hall M. A., (1994b), The effect of student color coding of knowledge maps and test anxiety on student learning, J. Exp. Educ., 62(4), 291–302 |
Harrison A. G. and Treagust D. F., (1996), Secondary students mental models of atoms and molecules: implications for teaching science, Sci. Educ., 80(5), 509–534 |
Harrison A. G. and Treagust D. F., (2000), Learning about atoms, molecules, and chemical bonds: a case study of multiple-model use in grade 11 chemistry, Sci. Educ., 84(3), 352–381 |
Harrison A. G. and Treagust D. F., (2002), The particulate nature of matter: challenges in understanding the submicroscopic world, in Gilbert J. K., De Jong O., Justi R., Treagust D. F. and Van Driel J. (ed.) Chemical Education: Towards Research-based Practice, Kluwer, pp. 189–212 |
Hwang G., Kuo F., Chen N. and Ho H., (2004), Effects of an integrated concept mapping and web-based problem solving approach on students' learning achievements, perceptions and cognitive loads, Comput. Educ., 71, 77–86 |
Jeung H. J., Chandler P. and Sweller J., (1997), The role of visual indicators in dual sensory mode instruction, J. Educ. Psychol., 17(3), 329–343 |
Johnstone A. H., (1982), Macro-and micro chemistry, Sch. Sci. Rev., 64(227), 377–379 |
Johnstone A. H., (1991), Why is science difficult to learn? Things are seldom what they seem, J. Comput. Assisted Learn., 7(2), 75–83 |
Johnstone A. H., (1993), The development of chemistry teaching, J. Chem. Educ., 70(9), 701–705 |
Johnstone A. H., (2000), Teaching of chemistry – logical or psychological?, Chem. Educ.: Res. Pract. Eur., 1(1), 9–15 |
Johnstone A. H. and Otis K. H., (2006), Concept mapping in problem based learning: a cautionary tale, Chem. Educ. Res. Pract., 7(2), 84–95 |
Justi R. and Gilbert J., (2000), History and philosophy of science through models: some challenges in the case of ‘the atom’, Int. J. Sci. Educ., 22(9), 993–1009 |
Kinchin I. M., (2000), Concept mapping in biology, J. Biol. Educ., 34(2), 61–68 |
Kotz J. C., Treichel P. M. and Weaver G. C., (2006), Chemistry and Chemical Reactivity, Thomson Learning |
Krajcik J. S., (1991), Developing students' understanding of chemical concepts, in Glynn S. M., Yeany R. H. and Britton B. K. (ed.) The psychology of learning science, Lawrence Erlbaum, pp. 117–147 |
Krathwohl D. R., (2002), A revision of Bloom's taxonomy: an overview, Theory Pract., 41(4), 213–218 |
Lopez E., Kim J., Nandagopal K., Cardin N., Shavelson R. J. and Penn J. H., (2011), Validating the use of concept-mapping as a diagnostic assessment tool in organic chemistry: implications for teaching, Chem. Educ. Res. Pract., 12(2), 133–141 |
Mayer R. E., (2002), Rote versus meaningful learning, Theory Pract., 41(4), 226–232 |
Mayer R. E. and Moreno R., (2003), Nine ways to reduce cognitive load in multimedia learning, J. Educ. Psychol., 38(1), 43–52 |
Moreno R., (2010), Cognitive load theory: more food for thought, Instr. Sci., 38, 135–141 |
Mulford D. R. and Robinson W. R., (2002), An inventory for alternate conceptions among first-semester general chemistry students, J. Chem. Educ., 79(6), 739–44 |
Nakiboglu C. and Taber K. S., (2013), The atom as a tiny solar system: Turkish high school students' understanding of the atom in relation to a common teaching analogy, in Tsaparlis G. and Sevian H. (ed.) Concepts of Matter in Science Education, Springer |
Niaz M. and Cardellini L., (2011), What can the Bohr–Sommerfeld model show students of chemistry in the 21st century, J. Chem. Educ., 88(2), 240–243 |
Nicoll G., Francisco J. S. and Nakhleh M., (2001), An investigation of the value of using concept maps in general chemistry, J. Chem. Educ., 78(8), 1111 |
Novak J. D., (1984), Application of advances in learning theory and the philosophy of science to the improvement of chemistry teaching, J. Chem. Educ., 61(7), 607–612 |
Novak J. D., (2010), Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations, Routledge |
Ozcelik E., Karakus T., Kursun E. and Cagiltay K., (2009), An eye-tracking study of how color coding affects multimedia learning, Comput. Educ., 53(2), 445–453 |
Paas F. G. W. C., (1992), Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach, J. Educ. Psychol., 84(4), 429–434 |
Paas F. G. W. C. and van Merriënboer J. J. G., (1993), The efficiency of instructional conditions: an approach to combine mental effort and performance measures, Hum. Factors, 35(4), 737–743 |
Paivio A., (1990), Mental representations: a dual coding approach, Oxford University Press |
Pendley B. D., Bretz R. L. and Novak J. D., (1994), Concept maps as a tool to assess learning in chemistry, J. Chem. Educ., 71(1), 9 |
Pollock E., Chandler P. and Sweller J., (2002), Assimilating complex information, Learn. Instr., 12(1), 61–86 |
Russell M. S., (2008), The Chemistry of Fireworks, Royal Society of Chemistry |
Safayeni F., Derbentseva N. and Cañas A. J., (2005), A theoretical note on concept maps and the need for cyclic concept maps, J. Res. Sci. Teach., 42(7), 741–766 |
Salmerón L., Baccino T., Cañas J. J., Madrid R. I. and Fajardo I., (2009), Do graphical overviews facilitate or hinder comprehension in hypertext? Comput. Educ., 53(4), 1308–1319 |
Steinhauser G. and Klapötke T. M., (2010), Using the chemistry of fireworks to engage students in learning basic chemical principles: a lesson in eco-friendly pyrotechnics, J. Chem. Educ., 87(2), 150–156 |
Stull A. T. and Mayer R. E., (2007), Learning by doing versus learning by viewing: three experimental comparisons of learner-generated versus author-provided graphic organizers, J. Educ. Psychol., 99(4), 808–820 |
Sweller J., Ayres P. and Kalyuga S., (2011), Cognitive Load Theory, Springer |
Taber K. S., (2001), When the analogy breaks down: modelling the atom on the solar system, Phys. Educ., 36(3), 222–226 |
Taber K. S., (2009), Learning at the symbolic level, in Gilbert J. K. and Treagust D. (ed.) Multiple representations in chemical education, Springer, pp. 75–105 |
Taber K. S., (2014), Student thinking and learning in science: perspectives on the nature and development of learners' ideas, Routledge |
Treagust D. F., Chittleborough G. and Mamiala T. L., (2003), The role of submicroscopic and symbolic representations in chemical explanations, Int. J. Sci. Educ., 25(11), 1353–1368 |
Wallace D. S., West S. W. C., Ware A. and Dansereau D. F., (1998), The effect of knowledge maps that incorporate Gestalt principles of learning, J. Exp. Educ., 67(1), 5–16 |
Wu H. K., Krajcik J. S. and Soloway E., (2001), Promoting conceptual understanding of chemical representations: students' use of a visualization tool in the classroom, J. Res. Sci. Teach., 38(7), 821–842 |
Yaman F. and Ayas A., (2015), Assessing changes in high school students' conceptual understanding through concept maps before and after the computer-based predict–observe–explain (CB-POE) tasks on acid–base chemistry at the secondary level, Chem. Educ. Res. Pract., 16(4), 843–855 |