Exportar registro bibliográfico


Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction (2016)

  • Authors:
  • Unidade: EACH
  • DOI: 10.1039/c6rp00069j
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1039/c6rp00069j (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      AGUIAR, Joana Guilares de; CORREIA, Paulo Rogério Miranda. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction. Chemistry Education Research and Practice, Cambridge, v. 17, p. 756-765, 2016. Disponível em: < http://dx.doi.org/10.1039/c6rp00069j > DOI: 10.1039/c6rp00069j.
    • APA

      Aguiar, J. G. de, & Correia, P. R. M. (2016). Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction. Chemistry Education Research and Practice, 17, 756-765. doi:10.1039/c6rp00069j
    • NLM

      Aguiar JG de, Correia PRM. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction [Internet]. Chemistry Education Research and Practice. 2016 ; 17 756-765.Available from: http://dx.doi.org/10.1039/c6rp00069j
    • Vancouver

      Aguiar JG de, Correia PRM. Using concept maps as instructional materials to foster the understanding of the atomic model and matter–energy interaction [Internet]. Chemistry Education Research and Practice. 2016 ; 17 756-765.Available from: http://dx.doi.org/10.1039/c6rp00069j

    Referências citadas na obra
    Aguiar J. G., Cicuto C. A. T. and Correia P. R. M., (2014), How can we prepare effective concept maps? Training procedures and assessment tools to evaluate mappers proficiency, J. Sci. Educ., 15(1), 12–19
    Ainsworth S., (2006), A conceptual framework for considering learning with multiple representations, Learn. Instr., 16(3), 183–198
    Amadieu F., van Gog T., Paas F., Tricot A. and Mariné C., (2009), Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning, Learn. Instr., 19(5), 376–386
    Ausubel D. P., (2000), The acquisition and retention of knowledge: a cognitive view, Kluwer Academic Publishers
    Burrows N. L. and Mooring S. R., (2015), Using concept mapping to uncover students' knowledge structures of chemical bonding concepts, Chem. Educ. Res. Pract., 16(1), 53
    Cañas A. J., Novak J. D. and Reiska P., (2015), How good is my concept map? Am I a good Cmapper? Knowl. Manage. E-Learn., 7(1), 6–19
    Cardellini L., (2012), Chemistry: why the subject is difficult? Educ. Quím., 23(2), 305–310
    Carlson R., Chandler P. and Sweller J., (2003), Learning and understanding science instructional material, J. Educ. Psychol., 95(3), 629–640
    Chi M. T. H., (2005), Common sense conceptions of emergent processes: Why some misconceptions are robust, J. Learn. Sci., 14(2), 161–199
    Cress U. and Knabel O. B., (2003), Previews in hypertexts: effects on navigation and knowledge acquisition, J. Comput. Assisted Learn., 19(4), 517–527
    Cros D., Maurin M., Amouroux R., Chastrette M., Leber J. and Fayol M., (1986), Conceptions of first-year university students of the constituents of matter and the notions of acids and bases, Eur. J. Sci. Educ., 8(3), 305–313
    De Jong T., (2010), Cognitive load theory, educational research, and instructional design: some food for thought, Instr. Sci., 38(2), 105–134
    Derbentseva N. and Kwantes P., (2014), Cmap readability: propositional parsimony, map layout and semantic clarity and flow. Concept Mapping for Learning and Innovation, in Correia P. R. M., Infante-Malachias M. E., Cañas A. J. and Novak J. D. (ed.) Proceedings of the Sixth International Conference on Concept Mapping, Santos, Brazil
    Driver R., Asoko H., Leach J., Mortimer E. and Scott P., (1994), Constructing scientific knowledge in the classroom, Educ. Res., 23(7), 5–12
    Gabel D., (1999), Improving Teaching and Learning through Chemistry Education Research: A Look to the Future, J. Chem. Educ., 76(4), 548–554, 1999
    Gabel D. L., Samuel K. V. and Hunn D., (1987), Understanding the particulate nature of matter, J. Chem. Educ., 64, 695–697
    Galloway K. R. and Bretz S. L., (2015), Measuring meaningful learning in the undergraduate general chemistry and organic chemistry laboratories: a longitudinal study, J. Chem. Educ., 92(12), 2019–2030
    Gilbert, J. K., (1997), Exploring models and modeling in science and technology education, The University of Reading, the New Bulmershe Papers
    Griffiths A. K. and Preston K. R., (1992), Grade 12 students' misconceptions relating to fundamental characteristics of atoms and molecules, J. Res. Sci. Teach., 29(6), 611–628
    Hagemans M. G., van der Meij H. and de Jong T., (2013), The effects of a concept map-based support tool on simulation-based inquiry learning, J. Educ. Psychol., 105(1), 1–24
    Hall R. H. and Sidio-Hall M. A., (1994a), The effect of color enhancement on knowledge map processing, J. Exp. Educ., 62(3), 209–217
    Hall R. H. and Sidio-Hall M. A., (1994b), The effect of student color coding of knowledge maps and test anxiety on student learning, J. Exp. Educ., 62(4), 291–302
    Harrison A. G. and Treagust D. F., (1996), Secondary students mental models of atoms and molecules: implications for teaching science, Sci. Educ., 80(5), 509–534
    Harrison A. G. and Treagust D. F., (2000), Learning about atoms, molecules, and chemical bonds: a case study of multiple-model use in grade 11 chemistry, Sci. Educ., 84(3), 352–381
    Harrison A. G. and Treagust D. F., (2002), The particulate nature of matter: challenges in understanding the submicroscopic world, in Gilbert J. K., De Jong O., Justi R., Treagust D. F. and Van Driel J. (ed.) Chemical Education: Towards Research-based Practice, Kluwer, pp. 189–212
    Hwang G., Kuo F., Chen N. and Ho H., (2004), Effects of an integrated concept mapping and web-based problem solving approach on students' learning achievements, perceptions and cognitive loads, Comput. Educ., 71, 77–86
    Jeung H. J., Chandler P. and Sweller J., (1997), The role of visual indicators in dual sensory mode instruction, J. Educ. Psychol., 17(3), 329–343
    Johnstone A. H., (1982), Macro-and micro chemistry, Sch. Sci. Rev., 64(227), 377–379
    Johnstone A. H., (1991), Why is science difficult to learn? Things are seldom what they seem, J. Comput. Assisted Learn., 7(2), 75–83
    Johnstone A. H., (1993), The development of chemistry teaching, J. Chem. Educ., 70(9), 701–705
    Johnstone A. H., (2000), Teaching of chemistry – logical or psychological?, Chem. Educ.: Res. Pract. Eur., 1(1), 9–15
    Johnstone A. H. and Otis K. H., (2006), Concept mapping in problem based learning: a cautionary tale, Chem. Educ. Res. Pract., 7(2), 84–95
    Justi R. and Gilbert J., (2000), History and philosophy of science through models: some challenges in the case of ‘the atom’, Int. J. Sci. Educ., 22(9), 993–1009
    Kinchin I. M., (2000), Concept mapping in biology, J. Biol. Educ., 34(2), 61–68
    Kotz J. C., Treichel P. M. and Weaver G. C., (2006), Chemistry and Chemical Reactivity, Thomson Learning
    Krajcik J. S., (1991), Developing students' understanding of chemical concepts, in Glynn S. M., Yeany R. H. and Britton B. K. (ed.) The psychology of learning science, Lawrence Erlbaum, pp. 117–147
    Krathwohl D. R., (2002), A revision of Bloom's taxonomy: an overview, Theory Pract., 41(4), 213–218
    Lopez E., Kim J., Nandagopal K., Cardin N., Shavelson R. J. and Penn J. H., (2011), Validating the use of concept-mapping as a diagnostic assessment tool in organic chemistry: implications for teaching, Chem. Educ. Res. Pract., 12(2), 133–141
    Mayer R. E., (2002), Rote versus meaningful learning, Theory Pract., 41(4), 226–232
    Mayer R. E. and Moreno R., (2003), Nine ways to reduce cognitive load in multimedia learning, J. Educ. Psychol., 38(1), 43–52
    Moreno R., (2010), Cognitive load theory: more food for thought, Instr. Sci., 38, 135–141
    Mulford D. R. and Robinson W. R., (2002), An inventory for alternate conceptions among first-semester general chemistry students, J. Chem. Educ., 79(6), 739–44
    Nakiboglu C. and Taber K. S., (2013), The atom as a tiny solar system: Turkish high school students' understanding of the atom in relation to a common teaching analogy, in Tsaparlis G. and Sevian H. (ed.) Concepts of Matter in Science Education, Springer
    Niaz M. and Cardellini L., (2011), What can the Bohr–Sommerfeld model show students of chemistry in the 21st century, J. Chem. Educ., 88(2), 240–243
    Nicoll G., Francisco J. S. and Nakhleh M., (2001), An investigation of the value of using concept maps in general chemistry, J. Chem. Educ., 78(8), 1111
    Novak J. D., (1984), Application of advances in learning theory and the philosophy of science to the improvement of chemistry teaching, J. Chem. Educ., 61(7), 607–612
    Novak J. D., (2010), Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations, Routledge
    Ozcelik E., Karakus T., Kursun E. and Cagiltay K., (2009), An eye-tracking study of how color coding affects multimedia learning, Comput. Educ., 53(2), 445–453
    Paas F. G. W. C., (1992), Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach, J. Educ. Psychol., 84(4), 429–434
    Paas F. G. W. C. and van Merriënboer J. J. G., (1993), The efficiency of instructional conditions: an approach to combine mental effort and performance measures, Hum. Factors, 35(4), 737–743
    Paivio A., (1990), Mental representations: a dual coding approach, Oxford University Press
    Pendley B. D., Bretz R. L. and Novak J. D., (1994), Concept maps as a tool to assess learning in chemistry, J. Chem. Educ., 71(1), 9
    Pollock E., Chandler P. and Sweller J., (2002), Assimilating complex information, Learn. Instr., 12(1), 61–86
    Russell M. S., (2008), The Chemistry of Fireworks, Royal Society of Chemistry
    Safayeni F., Derbentseva N. and Cañas A. J., (2005), A theoretical note on concept maps and the need for cyclic concept maps, J. Res. Sci. Teach., 42(7), 741–766
    Salmerón L., Baccino T., Cañas J. J., Madrid R. I. and Fajardo I., (2009), Do graphical overviews facilitate or hinder comprehension in hypertext? Comput. Educ., 53(4), 1308–1319
    Steinhauser G. and Klapötke T. M., (2010), Using the chemistry of fireworks to engage students in learning basic chemical principles: a lesson in eco-friendly pyrotechnics, J. Chem. Educ., 87(2), 150–156
    Stull A. T. and Mayer R. E., (2007), Learning by doing versus learning by viewing: three experimental comparisons of learner-generated versus author-provided graphic organizers, J. Educ. Psychol., 99(4), 808–820
    Sweller J., Ayres P. and Kalyuga S., (2011), Cognitive Load Theory, Springer
    Taber K. S., (2001), When the analogy breaks down: modelling the atom on the solar system, Phys. Educ., 36(3), 222–226
    Taber K. S., (2009), Learning at the symbolic level, in Gilbert J. K. and Treagust D. (ed.) Multiple representations in chemical education, Springer, pp. 75–105
    Taber K. S., (2014), Student thinking and learning in science: perspectives on the nature and development of learners' ideas, Routledge
    Treagust D. F., Chittleborough G. and Mamiala T. L., (2003), The role of submicroscopic and symbolic representations in chemical explanations, Int. J. Sci. Educ., 25(11), 1353–1368
    Wallace D. S., West S. W. C., Ware A. and Dansereau D. F., (1998), The effect of knowledge maps that incorporate Gestalt principles of learning, J. Exp. Educ., 67(1), 5–16
    Wu H. K., Krajcik J. S. and Soloway E., (2001), Promoting conceptual understanding of chemical representations: students' use of a visualization tool in the classroom, J. Res. Sci. Teach., 38(7), 821–842
    Yaman F. and Ayas A., (2015), Assessing changes in high school students' conceptual understanding through concept maps before and after the computer-based predict–observe–explain (CB-POE) tasks on acid–base chemistry at the secondary level, Chem. Educ. Res. Pract., 16(4), 843–855

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021