An embedded imputation method via Attribute-based Decision Graphs (2016)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1016/j.eswa.2016.03.027
- Subjects: REDES NEURAIS; REDES COMPLEXAS; INTELIGÊNCIA ARTIFICIAL
- Keywords: Missing attribute value; Data imputation; Single imputation; Attribute-based Decision Graphs; Machine learning based imputation; Methods
- Language: Inglês
- Imprenta:
- Publisher place: Kidlington
- Date published: 2016
- Source:
- Título: Expert Systems with Applications
- ISSN: 0957-4174
- Volume/Número/Paginação/Ano: v. 57, p. 159-177, 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BERTINI JUNIOR, João Roberto e NICOLETTI, Maria do Carmo e ZHAO, Liang. An embedded imputation method via Attribute-based Decision Graphs. Expert Systems with Applications, v. 57, p. 159-177, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2016.03.027. Acesso em: 12 fev. 2026. -
APA
Bertini Junior, J. R., Nicoletti, M. do C., & Zhao, L. (2016). An embedded imputation method via Attribute-based Decision Graphs. Expert Systems with Applications, 57, 159-177. doi:10.1016/j.eswa.2016.03.027 -
NLM
Bertini Junior JR, Nicoletti M do C, Zhao L. An embedded imputation method via Attribute-based Decision Graphs [Internet]. Expert Systems with Applications. 2016 ; 57 159-177.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.eswa.2016.03.027 -
Vancouver
Bertini Junior JR, Nicoletti M do C, Zhao L. An embedded imputation method via Attribute-based Decision Graphs [Internet]. Expert Systems with Applications. 2016 ; 57 159-177.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.eswa.2016.03.027 - Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
- Classificação de alto nível baseada em entropia da rede
Informações sobre o DOI: 10.1016/j.eswa.2016.03.027 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas