Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models (2016)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1137/15M1031631
- Subjects: PROGRAMAÇÃO NÃO LINEAR; MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO; PROGRAMAÇÃO MATEMÁTICA; ANÁLISE DE ALGORITMOS
- Language: Inglês
- Imprenta:
- Publisher place: Philadelphia
- Date published: 2016
- Source:
- Título: SIAM Journal on Optimization
- ISSN: 1095-7189
- Volume/Número/Paginação/Ano: v. 26, n. 2, p. 951-967, 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg et al. Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models. SIAM Journal on Optimization, v. 26, n. 2, p. 951-967, 2016Tradução . . Disponível em: https://doi.org/10.1137/15M1031631. Acesso em: 21 fev. 2026. -
APA
Birgin, E. J. G., Gardenghi, J. L. C., Martinez, J. M., Santos, S. A., & Toint, P. L. (2016). Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models. SIAM Journal on Optimization, 26( 2), 951-967. doi:10.1137/15M1031631 -
NLM
Birgin EJG, Gardenghi JLC, Martinez JM, Santos SA, Toint PL. Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models [Internet]. SIAM Journal on Optimization. 2016 ; 26( 2): 951-967.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1137/15M1031631 -
Vancouver
Birgin EJG, Gardenghi JLC, Martinez JM, Santos SA, Toint PL. Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models [Internet]. SIAM Journal on Optimization. 2016 ; 26( 2): 951-967.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1137/15M1031631 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1137/15M1031631 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
