A study of the use of complexity measures in the similarity search process adopted by kNN algorithm for time series prediction (2015)
- Authors:
- Autor USP: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC
- Unidade: ICMC
- DOI: 10.1109/ICMLA.2015.174
- Subjects: INTELIGÊNCIA ARTIFICIAL; ALGORITMOS
- Language: Inglês
- Imprenta:
- Publisher: CPS
- Publisher place: Los Alamitos
- Date published: 2015
- Source:
- Título: Proceedings
- Conference titles: IEEE International Conference on Machine Learning and Applications - ICMLA
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
PARMEZAN, Antonio Rafael Sabino e BATISTA, Gustavo Enrique de Almeida Prado Alves. A study of the use of complexity measures in the similarity search process adopted by kNN algorithm for time series prediction. 2015, Anais.. Los Alamitos: CPS, 2015. Disponível em: https://doi.org/10.1109/ICMLA.2015.174. Acesso em: 12 jan. 2026. -
APA
Parmezan, A. R. S., & Batista, G. E. de A. P. A. (2015). A study of the use of complexity measures in the similarity search process adopted by kNN algorithm for time series prediction. In Proceedings. Los Alamitos: CPS. doi:10.1109/ICMLA.2015.174 -
NLM
Parmezan ARS, Batista GE de APA. A study of the use of complexity measures in the similarity search process adopted by kNN algorithm for time series prediction [Internet]. Proceedings. 2015 ;[citado 2026 jan. 12 ] Available from: https://doi.org/10.1109/ICMLA.2015.174 -
Vancouver
Parmezan ARS, Batista GE de APA. A study of the use of complexity measures in the similarity search process adopted by kNN algorithm for time series prediction [Internet]. Proceedings. 2015 ;[citado 2026 jan. 12 ] Available from: https://doi.org/10.1109/ICMLA.2015.174 - Time series transductive classification on imbalanced data sets: an experimental study
- Equipamento desenvolvido na USP identifica focos de dengue [Depoimento a Fábio Taconelli]
- Robust Multi-class Graph Transduction with higher order regularization
- Counting and classifying mosquitoes from a distance with ultra cheap sensors
- Extração de padrões e construção de modelos simbólicos para previsão de dados temporais
- Combining instance selection and self-training to improve data stream quantification
- Mineração de séries temporais por meio da extração de características e da identificação de motifs
- Flying insect classification with inexpensive sensors
- Flying insect detection and classification with inexpensive sensors
- Quantification in data streams: initial results
Informações sobre o DOI: 10.1109/ICMLA.2015.174 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas