A Weibull mixture model for the votes of a brazilian political party (2015)
- Authors:
- USP affiliated authors: EHLERS, RICARDO SANDES - ICMC ; GUZMÁN, JORGE LUIS BAZÁN - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-319-12454-4_19
- Subjects: PROCESSOS ESTOCÁSTICOS; INFERÊNCIA BAYESIANA; INFERÊNCIA ESTATÍSTICA; INFERÊNCIA PARAMÉTRICA; PROBABILIDADE
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
PAZ, Rosineide F e EHLERS, Ricardo Sandes e BAZÁN GUZMÁN, Jorge Luis. A Weibull mixture model for the votes of a brazilian political party. Interdisciplinary Bayesian Statistics: EBEB 2014. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-319-12454-4_19. Acesso em: 02 abr. 2025. , 2015 -
APA
Paz, R. F., Ehlers, R. S., & Bazán Guzmán, J. L. (2015). A Weibull mixture model for the votes of a brazilian political party. Interdisciplinary Bayesian Statistics: EBEB 2014. Cham: Springer. doi:10.1007/978-3-319-12454-4_19 -
NLM
Paz RF, Ehlers RS, Bazán Guzmán JL. A Weibull mixture model for the votes of a brazilian political party [Internet]. Interdisciplinary Bayesian Statistics: EBEB 2014. 2015 ;[citado 2025 abr. 02 ] Available from: https://doi.org/10.1007/978-3-319-12454-4_19 -
Vancouver
Paz RF, Ehlers RS, Bazán Guzmán JL. A Weibull mixture model for the votes of a brazilian political party [Internet]. Interdisciplinary Bayesian Statistics: EBEB 2014. 2015 ;[citado 2025 abr. 02 ] Available from: https://doi.org/10.1007/978-3-319-12454-4_19 - Comparing multivariate GARCH-DCC models using Hamiltonian Monte Carlo and Stan
- Bayesian estimation of the Kumaraswamy inverse Weibull distribution
- A Study Hamiltonian Monte Carlo methods in univariate GARCH models
- Modelos de volatilidade estocástica utilizando os métodos de Langevin ajustado Metropolis e de Monte Carlo Hamiltoniano
- Influential observations in spatial models using Bregman divergence
- A study of skewed heavy-tailed distributions as scale mixtures
- Computational tools for comparing asymmetric GARCH models via Bayes factors
- Outliers identification on spatial models
- Zero variance estimator for GJR-GARCH models via Hamiltonian Monte Carlo
- Bayesian inference for GJR-GARCH models via Hamiltonian Monte Carlo
Informações sobre o DOI: 10.1007/978-3-319-12454-4_19 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas