Exportar registro bibliográfico


Metrics:

An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization (2016)

  • Authors:
  • Autor USP: HAESER, GABRIEL - IME
  • Unidade: IME
  • DOI: 10.1007/s11590-015-0928-x
  • Subjects: OTIMIZAÇÃO MATEMÁTICA; OTIMIZAÇÃO NÃO LINEAR
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11590-015-0928-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BUENO, Luis Felipe; HAESER, Gabriel; MARTINEZ, José Mario. An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization. Optimization Letters, Heidelberg, v. 10, n. 6, p. 1315-1325, 2016. Disponível em: < http://dx.doi.org/10.1007/s11590-015-0928-x > DOI: 10.1007/s11590-015-0928-x.
    • APA

      Bueno, L. F., Haeser, G., & Martinez, J. M. (2016). An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization. Optimization Letters, 10( 6), 1315-1325. doi:10.1007/s11590-015-0928-x
    • NLM

      Bueno LF, Haeser G, Martinez JM. An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization [Internet]. Optimization Letters. 2016 ; 10( 6): 1315-1325.Available from: http://dx.doi.org/10.1007/s11590-015-0928-x
    • Vancouver

      Bueno LF, Haeser G, Martinez JM. An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization [Internet]. Optimization Letters. 2016 ; 10( 6): 1315-1325.Available from: http://dx.doi.org/10.1007/s11590-015-0928-x

    Referências citadas na obra
    Andreani, R., Castro, S.L., Chela, J.L., Friedlander, A., Santos, S.A.: An inexact-restoration method for nonlinear bilevel programming problems. Comput. Optim. Appl. 43, 307–328 (2009)
    Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60, 627–641 (2011)
    Arrow, K., Barankin, E., Blackwell, D.: Admissible points of convex sets. In: Kuhn, H. W., Tucker A.W (eds.) Contributions to the Theory of Games. Princeton University Press, Princeton, NJ (1953)
    Bonnel, H., Kaya, C.Y.: Optimization over the efficient set of multi-objective convex optimal control problems. J. Optim. Theory Appl. 147, 93–112 (2010)
    Bueno, L.F., Haeser, G., Martínez, J.M.: A flexible inexact-restoration method for constrained optimization. J. Optim. Theory Appl. 165(1), 188–208 (2015)
    Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate Pareto fronts on problems with disconnected feasible sets. J. Optim. Theory Appl. 162(2), 428–446 (2014)
    Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7, 261–277 (1995)
    Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)
    Dutta, J., Kaya, C.Y.: A new scalarization and numerical method for constructing weak Pareto front of multi-objective optimization problems. Optimization 60, 1091–1104 (2011)
    Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin, Heidelberg (2008)
    Fischer, A., Friedlander, A.: A new line search inexact restoration approach for nonlinear programming. Comput. Optim. Appl. 46, 333–346 (2010)
    Fletcher, R.: A sequential linear constraint programming algorithm for NLP. SIAM J. Optim. 22, 772–794 (2012)
    Fliege, J., Graña-Drummond, L.F., Svaiter, B.F.: Newton‘s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)
    Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 387–407 (1968)
    Gonzaga, C.C., Karas, E.W., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14, 646–669 (2003)
    Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)
    Jahn, J.: Vector Optimization. Springer-Verlag, Berlin Heidelberg (2011)
    Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001)
    Martínez, J.M., Pilotta, E.A.: Inexact restoration algorithms for constrained optimization. J. Optim. Theory Appl. 104, 135–163 (2000)
    Martínez, J.M., Pilotta, E.A.: Inexact restoration methods for nonlinear programming: advances and perspectives. In: Qi, L.Q., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications, pp. 271–292. Springer, Berlin (2005)
    Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)
    Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)
    Petschke, M.: On a theorem of Arrow, Barankin, and Blackwell. SIAM J. Control Optim. 28(2), 395–401 (1990)
    Ramirez, V.: Um problema Bilevel-Multiobjetivo com Pontos Propriamente Eficientes. Departamento de Matemática Aplicada, Universidade Estadual de Campinas, Ph.D. proposal (2013)
    Yahoo Finance website. http://finance.yahoo.com/
    Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22, 285–317 (2002)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020