Data clustering based on collective behavior and self-organization (2014)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL; REDES NEURAIS
- Language: Inglês
- Imprenta:
- Publisher place: Rio de Janeiro
- Date published: 2014
- Source:
- Título: Anais
- Conference titles: SIBGRAPI Conference on Graphics, Patterns and Images
-
ABNT
GUELERI, Roberto Alves e LIANG, Zhao. Data clustering based on collective behavior and self-organization. 2014, Anais.. Rio de Janeiro: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2014. . Acesso em: 10 fev. 2026. -
APA
Gueleri, R. A., & Liang, Z. (2014). Data clustering based on collective behavior and self-organization. In Anais. Rio de Janeiro: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. -
NLM
Gueleri RA, Liang Z. Data clustering based on collective behavior and self-organization. Anais. 2014 ;[citado 2026 fev. 10 ] -
Vancouver
Gueleri RA, Liang Z. Data clustering based on collective behavior and self-organization. Anais. 2014 ;[citado 2026 fev. 10 ] - Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
- Classificação de alto nível baseada em entropia da rede
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas