Umbilic singularities and lines of curvature on ellipsoids of ℝ4 (2014)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- DOI: 10.1007/s00574-014-0058-6
- Subjects: FOLHEAÇÕES; GEOMETRIA GLOBAL; GEOMETRIA DIFERENCIAL; TOPOLOGIA DIFERENCIAL
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2014
- Source:
- Título: Bulletin of the Brazilian Mathematical Society
- ISSN: 1678-7544
- Volume/Número/Paginação/Ano: v. 45, n. 3, p. 453-483, 2014
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SILVA, Débora Lopes da e SOTOMAYOR, Jorge e GARCIA, Ronaldo. Umbilic singularities and lines of curvature on ellipsoids of ℝ4. Bulletin of the Brazilian Mathematical Society, v. 45, n. 3, p. 453-483, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00574-014-0058-6. Acesso em: 20 jan. 2026. -
APA
Silva, D. L. da, Sotomayor, J., & Garcia, R. (2014). Umbilic singularities and lines of curvature on ellipsoids of ℝ4. Bulletin of the Brazilian Mathematical Society, 45( 3), 453-483. doi:10.1007/s00574-014-0058-6 -
NLM
Silva DL da, Sotomayor J, Garcia R. Umbilic singularities and lines of curvature on ellipsoids of ℝ4 [Internet]. Bulletin of the Brazilian Mathematical Society. 2014 ; 45( 3): 453-483.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1007/s00574-014-0058-6 -
Vancouver
Silva DL da, Sotomayor J, Garcia R. Umbilic singularities and lines of curvature on ellipsoids of ℝ4 [Internet]. Bulletin of the Brazilian Mathematical Society. 2014 ; 45( 3): 453-483.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1007/s00574-014-0058-6 - Lines of curvature and an integral form of Mainardi-Codazzi equations
- Harmonic mean curvature lines on surfaces immersed in R-3
- Stable piecewise polynomial vector fields
- Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band
- Algebraic solutions for polynomial systems with emphasis in the quadratic case
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- Bifurcation analysis of a model for biological control
- Umbilic and tangential singularities on configurations of principal curvature lines
- Structurally stable configurations of lines of curvature and umbilic points on surfaces
- On pairs of foliations defined by vector fields in the plane
Informações sobre o DOI: 10.1007/s00574-014-0058-6 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
