Fuzzy community structure detection by particle competition and cooperation (2013)
- Authors:
- Autor USP: LIANG, ZHAO - ICMC
- Unidade: ICMC
- DOI: 10.1007/s00500-012-0924-3
- Subjects: INTELIGÊNCIA ARTIFICIAL; COMPUTAÇÃO GRÁFICA; PROCESSAMENTO DE IMAGENS
- Language: Inglês
- Imprenta:
- Source:
- Título: Soft Computing
- ISSN: 1432-7643
- Volume/Número/Paginação/Ano: v. 17, n. 4, p. 659-673, 2013
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BREVE, Fabricio e LIANG, Zhao. Fuzzy community structure detection by particle competition and cooperation. Soft Computing, v. 17, n. 4, p. 659-673, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00500-012-0924-3. Acesso em: 17 fev. 2026. -
APA
Breve, F., & Liang, Z. (2013). Fuzzy community structure detection by particle competition and cooperation. Soft Computing, 17( 4), 659-673. doi:10.1007/s00500-012-0924-3 -
NLM
Breve F, Liang Z. Fuzzy community structure detection by particle competition and cooperation [Internet]. Soft Computing. 2013 ; 17( 4): 659-673.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00500-012-0924-3 -
Vancouver
Breve F, Liang Z. Fuzzy community structure detection by particle competition and cooperation [Internet]. Soft Computing. 2013 ; 17( 4): 659-673.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00500-012-0924-3 - Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
- Classificação de alto nível baseada em entropia da rede
Informações sobre o DOI: 10.1007/s00500-012-0924-3 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas