On infinitely cohomologous to zero observables (2013)
- Authors:
- USP affiliated author: BRANDÃO, DANIEL SMANIA - ICMC
- School: ICMC
- DOI: 10.1017/S0143385711000976
- Subjects: TEORIA ERGÓDICA; DINÂMICA UNIDIMENSIONAL; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Ergodic Theory and Dynamic Systems
- ISSN: 0143-3857
- Volume/Número/Paginação/Ano: v. 33, n. 2, p. 375-399, 2013
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
LIMA, Amanda de e BRANDÃO, Daniel Smania. On infinitely cohomologous to zero observables. Ergodic Theory and Dynamic Systems, v. 33, n. 2, p. 375-399, 2013Tradução . . Acesso em: 04 jul. 2022. -
APA
Lima, A. de, & Brandão, D. S. (2013). On infinitely cohomologous to zero observables. Ergodic Theory and Dynamic Systems, 33( 2), 375-399. doi:10.1017/S0143385711000976 -
NLM
Lima A de, Brandão DS. On infinitely cohomologous to zero observables. Ergodic Theory and Dynamic Systems. 2013 ; 33( 2): 375-399.[citado 2022 jul. 04 ] -
Vancouver
Lima A de, Brandão DS. On infinitely cohomologous to zero observables. Ergodic Theory and Dynamic Systems. 2013 ; 33( 2): 375-399.[citado 2022 jul. 04 ] - Classic and exotic besov spaces induced by good grids
- Metric stability for random walks (with applications in renormalization theory)
- Puzzle geometry and rigidity: the fibonacci cycle is hyperbolic
- Analyticity of the SRB measure for holomorphic families of quadratic-like collet-eckmann maps
- On the hyperbolicity of the period-doubling fixed point
- Central limit theorem for generalized Weierstrass functions
- Rigidity for piecewise smooth homeomorphisms on the circle
- Ergodic transport theory and piecewise analytic subactions for analytic dynamics
- Renormalization of analytic multicritical circle maps with bounded type rotation numbers
- Phase space universality for multimodal maps
Informações sobre o DOI: 10.1017/S0143385711000976 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas