ON INFINITELY COHOMOLOGOUS TO ZERO OBSERVABLES

AMANDA DE LIMA AND DANIEL SMANIA

ABSTRACT. We show that for a large class of piecewise expanding maps T,
the bounded p-variation observables ug that admits an infinite sequence of
bounded p-variation observables u; satisfying

ui =uir1 0T —uipq

are constant. The method of the proof consists in to find a suitable Hilbert
basis for L?(hm), where hm is the unique absolutely continuous invariant
probability of T'. In terms of this basis, the action of the Perron-Frobenious
and the Koopman operator on L?(hm) can be easily understood. This result
generalizes earlier results by Bamoén, Kiwi, Rivera-Letelier and Urzda in the
case T'(z) = fx mod 1, £ € N\ {0, 1} and Lipschitizian observables ug.

1. INTRODUCTION

Let T: I — I be a dynamical system. Consider the cohomological operator
defined by
‘C('l/)) = ’l/) ol — 77/1»
Given an observable, that is, a function ug: I — R, one can ask if there exists a
solution u; to the Lwisic cohomologous equation

L(u1) = ug.

Such equation was intensively studied after its introduction by the seminal work of
Livsic. These studies mainly concerns to the existence and regularity of the solution
Uuy.

Let p be an invariant probability measure of T. We say that a function u : I — R
in L'(u) is cohomologous to zero if there is a function w : I — R in L'(u) such
that

u= L(w).
An observable ug is infinitely cohomologous to zero if there exists a sequence of
functions u,, € L'(u), n € N, such that £"u,, = ug, for all n € N.

Bamoén, Kiwi, Rivera-Letelier and Urzia [4] consider the expanding maps defined

by

Ty(z) = Lz mod 1,
where ¢ > 2 is an integer. The Lebesgue measure on [0,1] is invariant by 7.
They show that every non-constant lipschitzian function u : I — R is not infinitely
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cohomologous to zero. In this work we generalize this result to a much larger class
of observables and piecewise expanding maps.

In [4] the study of this problem is motivated by the following observation. Let
A€ (—1,1), up: I — R be a Lipschitz function and define

A:ITxR—-TxR
by
A)\,uo (Iv y) = (Tg(l’), )‘y + ’LLO(.T))
In [4] they notice that
i. If L(uy) = ug then Ay ,, o H = Ho Ay ,,, where H is the homeomorphism

1-x 7
ii. It turns out that the analysis of topological structure of the attractor of
Ay is easier if u is not cohomologous to zero.

H(z,y) = (z,

So if ug is not infinitely cohomologous to zero, by i. we can reduce the analysis of
the topological dynamics of Ay, to the analysis of Ay ,,,, where £ (u,) = up and
Uy, is not cohomologous to zero. Using our results, a similar analysis of attractors
could potentially be achieved to far more general skew-products.

1.1. Statement of results. Let I be an interval. We say that T: I — I is a
piecewise monotone map if there exists a partition by intervals {I;,..., I, } of T
such that for each ¢ < m the map T is continuous and strictly monotone in I;. A
piecewise monotone map is onto if furthermore T'(I;) = I for every i. A piecewise
monotone map is called expanding if T is differentiable on each I; and

inf inf |T"(x)| > 1.
i x€l;

In this work, we will consider mainly maps 7T: I — I satisfying the following con-
ditions:

(D1) T is piecewise monotone, Lipschitz on each interval of the partition I,
i < m. In particular T” is defined almost everywhere and it is an essentially
bounded function. We also assume

(1) essinf |T"| > 0.

Here essinf,, denotes the essential infimum with respect to the Lebesgue
measure m.

(D2) We have T'(I) = I and moreover for every interval H C I there is a finite
collection of pairwise disjoint open subintervals Hy, ..., Hy C H and n such
that T™ is a homeomorphism on H; and

int I C UiTn(Hi).

(D3) T has a horseshoe, that is, there are three open intervals Jy,Jo C J C I,
with JiNJs = 0, such that T is a homeomorphism on each J; and T'(J;) = J,
i=1,2.
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(D4) T has an invariant probability p that is absolutely continuous with respect
to the Lebesgue measure m, so

1(A) :/Ah dm

for some h € L!'(m). We will denote u = hm, where h € L'(m) and m is
the Lebesgue measure on I. Moreover p is exact and there exist a, b such
that

(2) 0<a<h(r)<b< oo
for hm-almost every = and the support of u is I.

Our main result is:

Theorem 1. Let T be a transformation satisfying DI1-Dj and let ug: I — R be
an observable with bounded p-variation. Then either ug is constant in I up to a
countable set or there exist M > 0 and bounded p-variation functions u; : I — R,
with i < M, which are unique (in L*(hm) and BV, ) up to an addition by a
constant, such that
o We have
ﬂui = Ug,
i I up to a countable set, for everyi < M.
e For every function p with bounded p-variation and every ¢ € R we have
Lp # upr + ¢ in a nonempty open set in 1.

With somehow distinct, but related, assumptions on 1" and ug, which are satisfied
in many interesting situations, we can improve this result is such way that Lp #
upr + ¢ for every p € L'(hm). In this direction A. Avila [2] contributed with
improvements of the results in the original version of this work and we are grateful
he agreed to include them here. Avila contribution is the following.

Theorem 2. [2] Let ug € L*(hm) be such that

/uohdmzo

and such that for every v € L (hm) there exist C >0 and X\ € [0,1) such that
y/uo-voTi-hdmy < OXN.

Then either ug is constant hm-almost everywhere or there exist an unique M > 0
and functions u; : I — R, with i < M, u; € L*(hm), which are unique in L*(hm),
up to an addition by a constant, such that
o We have
Liu; = ug in L*(hm)
for every i < M.
o For every function p € L'(hm) and every ¢ € R we have Lp # up + ¢ on
LY (hm)

Let (B,| - |g) be a Banach space of real-valued, Lebesgue measurable functions
defined on I such that
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(D5) (i) T is a piecewise expanding map satisfying D1 and D4.
(ii) There exists C and pg > 1 such that

Ifleihmy < ClflB

for every f € B.

(iii) the Perron-Frobenious operator &7 of T is a bounded operator on B
and there exists h € B, h > 0, with fh dm =1, A € [0,1) and an linear
operator ¥: B — B such that

or(f) :/f dm - h+ U (f),

with
™ (f)le < CA"| s,
for every f € B and n € N. Moreover ¥(h) = 0.
(iv) 1/h € B.
(v) The multiplication

(f,9)—f-g

is a bounded bilinear transformation on B.
(vi) The set B is dense in L' (hm).

Theorem 3. Let T be a transformation satisfying D1 and D4 and suppose that the
Banach space of functions B and T satisfy D5. Let ug € B be an observable. Then
either ug is constant hm-almost everywhere or there exist an unique M > 0 and
functions u; : I — R, with i < M, u; € L*(hm), which are unique in L*(hm), up
to an addition by a constant, such that
e We have
Liu; = ug in L' (hm)
for every i < M.
o For every function p € L'(hm) and every ¢ € R we have Lp # up + ¢ on
LY (hm)
Moreover u; belongs to B, fori < M.

Remark 1.1. In the first version of this work, Theorem 3 had additional assump-
tions. We assumed for instance that B was contained in the space of functions
with p-bounded variation. This is not longer necessary due Avila’s contribution
(Theorem 2).

Remark 1.2. The finiteness result for the family of cohomological operators
Ly(v) =voT — v,

with A € (0,1], T(z) = fx mod 1, for integers ¢ > 2 and Lipschitz observables,
obtained in [4, Main Lemma, page 225], can also be generalized for maps described
in Remarks 1.3, 1.4 and 1.5, replacing Lipschitz observables by bounded variation
observables. The methods to achieve this generalization are quite similar to those
in [4], so we will not give a full proof here. It is necessary to use Theorem 3, and to
replace in their argument the usual Fourier basis by the basis obtained in Section
3 and the compactness of closed balls centered at zero of the space of Lipschitz
functions as subsets of the space of continuous functions by Helly’s Theorem, that
is, the compactness of closed balls centered at zero of the space of bounded variation
functions as subsets of L!(hm).
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Remark 1.3. There are plenty of examples of transformations 7': I — I satisfying
D1-D4. Let T be a piecewise monotone, expanding map, C? on each I;. Consider
the m x m matrix Ar = (a;;) defined by a;; = 1 if

T(ZTLt IZ) C int Ij,
and a;; = 0 otherwise. Here the closure and interior are taken with respect to the
topology of [0,1]. Suppose that A% > 0 for some k. Then T satisfies D1, D2 and
D4 and some iteration of T' satisfies D1-D4. If we add the assumption that T has a

horseshoe, then T fulfills D1-D4. The space of bounded variation functions BV (I)
and T satisfy D5.

Remark 1.4. A class of examples satisfying D1-D4 are S-transformations T'(z) =
Bx mod 1, with 8 > 2, 8 € R, I =[0,1]. The space of bounded variation functions
BV (I) and T satisfy D5.

Remark 1.5. Let T': [-1,1] = [—1, 1] be a continuous map with T'(—1) = T(1) =
—1, C? on the intervals [—1,0] and [0, 1], with 7/ > 0 in [~1,0] and 7" < 0 in [0, 1]
and T'(—x) = T(x) for every x € [—1,1]. Define

0 = inf |T"(z)|.

If & > 1 then there exists an unique fixed point p € [0,1]. Define J = [—p,p]. If
# > /2 then T2 has a horseshoe in J and satisfies D1-D4 with I = [T"%(0), T(0)].
The space of bounded variation functions BV (I) and T satisfies D5.

Remark 1.6. Let T: I — I be a piecewise expanding and onto map, C*t<0 in
each I;, ap € (0,1). Then T satisfies D1 — D4. The space of Holder continuous
functions C*(I), for a < ag, and T satisfy D5.

Remark 1.7. Let T: I — I be a piecewise expanding map, linear in each I;.
Suppose that T has a horseshoe and satisfies the conditions on the matrix Ap as in
Remark 1.3. One can prove using the results of Wong [10] that T" satisfies D1 — D4.
The space of bounded p-variation functions BV, (I), with p > 1, and T satisfy D5.

Remark 1.8. The mixing assumptions on the invariant measure p are necessary,
as it is shown by the following example. Consider a piecewise C? expanding map
T: 1 — I, unimodal (continuous and only one turning point), and with a cycle of
intervals, that is, there are open intervals J; C I, j < p pairwise disjoint, such
that f(J;) C Jj+1 mod p and f(8J;) C 8Jj41 modp - Then T has an absolutely
continuous invariant probability p and its support is contained in Ujjj. Let 6 €
C\ {1} be a p-root of unit, 6? = 1. Define u;: I — C, i > 0, as
57
ui(@) = Gy

for x € J;. Define u; in an arbitrary way elsewhere. It is easy to see that u; =
uir1 0T — u;p1 on LY(hm). To obtain real-valued functions, we can consider the
real and imaginary parts of u;.

1.2. Topological Results. Replacing Lipschitzian by bounded p-variation observ-
ables has the advantage to allow us to obtain results similar to Theorems 1 and 3 to
maps which are just topologically conjugate with maps satisfying the assumptions
of those theorems.

We will say that two functions f,g: W — R are equal except in a countable
subset, f =gon W (e.cs.) if {x € W: f(z) # g(x)} is countable.
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Theorem 4. Let H: I — I be a homeomorphism, let T' be a piecewise monotone
map and T satisfying D1-Dj. Suppose that

HoT=ToH

in I (e.c.s). Let ug: H(I) — R be an observable with bounded p-variation. Then
either ug is constant in H(I)(e.c.s) or there exist an unique M > 0 and bounded p-
variation functions u; : H(I) — R, with i < M, which are unique up to an addition
by a constant (e.c.s.), such that

e We have
i
£ U; = Ug,

on H(I) (e.c.s) for everyi < M.
e For every function p with bounded p-variation and every ¢ € R we have
Lp # upr + ¢ in a non-empty open subset in H(I).

Theorem 5. Let H: I — I be a homeomorphism, let T' be a piecewise monotone
map and T satisfying D1-Dj. Suppose that

HoT=ToH

in I (e.c.s.). Suppose that the space of functions with bounded po-variation BV, 1
and T satisfy D5. Let ug: H(I) — R be an observable with bounded py-variation.
Then either ug is constant in H(I)(e.c.s) or there exist an unique M > 0 and
continuous (e.c.s.) bounded borelian functions u; : H(I) — R, with i < M, which
are unique up to an addition by a constant (e.c.s.), such that

e We have
i
£ U; = Ug,

on H(I)(e.c.s.) for everyi < M.
o We have Lp # up + ¢
A. in an uncountable subset of H(I), if p is a Borel measurable, bounded
function and ¢ € R.
B. in a non-empty open subset of H(I), if p is a Borel measurable, bounded
function which is continuous in H(I)(e.c.s.) and ¢ € R.

Moreover u; has bounded pg-variation, i < M.

Remark 1.9. Let T': [0,2] — [0,2] be a piecewise monotone, C! in [0, 1] and [1, 2],

T[0,1] = T[1,2] = [0,2], with 7(0) = 0, 7" > A > 1 in [1,2] and T"(z) > 1 in
€ (0,1) and T'(0) = 1. Then T is conjugate with T(z) = 2-z mod 1, so T

satisfies the assumptions of Theorems 4 and 5, considering pg = 1 in Theorem 5.

Remark 1.10. Let 7: [-1,1] — [-1,1], T(-1) = T(1) = -1, C® in [-1,1],
T(0) =0,T7" > 0o0n [-1,0), T < 0 on (0,1]. If T has negative Schwarzian deriv-
ative and non-renormalizable then T is conjugate with a tent map Tj: [~1,1] —
[—1,1], defined as T(z) = —B|z| + B — 1, with 8 = exp(hiop(T)). Here hyop(T)
denotes the topological entropy of T. If hip(T) > In(2)/2 then T?: I — I, with
I =[T?%(0),T(0)], satisfies the assumptions of Theorems 4 and 5, considering pg = 1
in Theorem 5.
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1.3. Continuous observables infinitely cohomologous to zero. A. Avila told
us a nice argument showing the existence of continuous and non constant observ-
ables that are infinitely cohomologous to zero. He kindly agreed to include this
result here.

Theorem 6. [2] Let T: S' — S! be a C' expanding map on the circle. Then there
erists a non constant continuous observable w that is infinitely cohomologous to
zero.

2. PRELIMINARIES

In this section we present some notations and definitions.

Definition 2.1. Given a function f : I — C and p > 1, we define the p-variation
of f by

vp,1(f) = sup (Z lg(ai) — g(ai1)|p> p 7

where the supremum is taken over all finite sequences ag < a1 < --- < an, a; € I.
We say that f has bounded p-variation if

vp,1(f) < o0

Since the Perron-Frobenious operator is not properly defined at points which
are image of points where DT is not defined, to define Perron-Frobenious operator
acting in the space of p-bounded variation functions it is convenient to identify
functions v and v defined on I so that w = v up to a countable subset of I. We
write u ~ v. The set of equivalence classes [f] with respect to the relation ~ such
that

vp,1([f]) = inf v, 1(g) < o0
fr~g

will be called the space of the functions on I with bounded p-variation and denoted
BV, ;. The function f — v, ;([f]) is a pseudo-norm on BV, ;. We can define a
norm by

1l8v;., = i (supg| +vp.1(g)).

(BVp1,|-|Bv,.;) is a Banach space. As usual, from now on we will omit the brackets
[[] in the notation of equivalence classes.

Note that 1/p-Holder continuous functions have bounded p-variation. When
p = 1, we say that the function has bounded variation.

Remark 2.2. One of the greatest advantages of dealing with p-bounded variation
observables, in opposition to either Holder or Lipschitzian ones, for instance, is
that the pseudo-norm v, ; is invariant by homeomorphisms, that is, if h: J — [ is
a homeomorphism and f: I — R is an observable then

Op,1(f) = vp,s(f o h).

Definition 2.3. Given a piecewise monotone, expanding map 7', satisfying D1,
define the Perron-Frobenius operator associated to T' by

orf(a) = S F(o5(2)) e Tir(s,) (),

2 [T7(o,2)]

where o : T(I;) — I; stands for the inverse branch of T restricted to I; and 1l;
denotes the characteristic function of the set J.
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The main properties of & are (see for instance [5] and [3]):

i) @7 is a continuous linear operator on L*(hm).
1 1

u)/ <I>Tf-gdm:/ f-goTdm, where f € L*(m) and g € L>(m).

0 0
iti) ®rf = f if and only if the measure p = fm is invariant by T

3. A SPECIAL BASIS OF L?(hm)

In this section we assume that T satisfies D1 and D4. Consider the Hilbert space
L?(hm) with the inner product

(u,w),,, = /uwh dm.

Indeed (u,w),, is well defined even for u € L*(hm) and w € Lb(hm), with k,b €
[1,00) U {400} satisfying

1 1

-+ -=1.

k + b
Since the measure hm is T-invariant we have

<’LLOT,’UJOT>hm = <U,’LU>

hm *
In this section we will built a special Hilbert basis for L?(hm). Consider the
bounded linear operator P : L*(hm) — L¥(hm), k > 1, defined by

P(u) = ‘p(;fh).

Due Eq. (2), the operator P is well defined. Indeed

h(oj(z 1
Z (h(g(g))) 1T (o;2)] Ly, (z) =1

jeJ
for every z and z* is convex, so we have

/IPU\kh dm < / (> h(ZZS)) |T/(Clrjx)| [l (0 (2)) L, (2)) “h(z) dm

JjeJ

Moy 1 )
< [ o ey @) dm = [ P dm

jer @)

1
< /<I>(|u\k) dm :/|u|k dm < f/|u|k hdm.
a

Note that for £ =1 we have
/|Pu|h dm < /<I>(|u|h) dm :/|u|h dm,
SO HPHLl(hm) § 1.
Let B = {®;}ien be an orthonormal basis for
Ker(P) = {u € L*(hm) s.t. P(u) = 0}.
Define
W={pioT? : p;eB e jeN}yuU{l}

Recall that 114 denotes the indicator function of a set A. The main result of this
section is
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Proposition 3.1. Suppose that T satisfies D1 and D4. Then W is a Hilbert basis
for L2(hm). Indeed we can choose B such that W C L>(hm).

Remark 3.2. A very interesting example of this theorem is given by the function
T:10,1] — [0,1] defined by T'(z) = fx mod 1, with £ € N\ {0,1}. In this case the
Ruelle-Perron-Frobenious operator is just

£—1 .
@r9)(e) = 7 ST,
=0

The Lebesgue measure m is an invariant probability, so P = ®p. Moreover
B = {sin(2mnx), cos(2rnz): £ does not divide n}
is a basis for Ker P. Note that
sin(2rnT’ (z)) = sin(2rnt?z) and cos(2mnT (x)) = cos(2mni ),

so the corresponding set W is just the classical Fourier basis of L2(]0, 1]).

By property ii. of the Perron-Frobenious operator, it is easy to see that the
Koopman operator U : L*(hm) — L¥(hm), k > 1, defined by

U(w)=woT,
is the adjoint operator of P, that is
(3) (P(u), 0)pp, = ( U(w))

for every u € L¥(hm) and w € L°(hm). Note that U preserves L¥(hm) because
hm is invariant. Moreover

PoU(f) - f
for every f € L*(hm).

Lemma 3.3. W is an orthonormal set.
Proof. Indeed

11|22 (hm) = 1,

0 0 T7 |22 (himy = |9il72(hmy = 1-

Futhermore if

(i1,71) # (i2; j2)
then either j; = jo, so we have

<90i1 o lea‘pig o Tj2>hm = <90i1a§0i2>hm =0,
or without loss of generality we can assume j; < jo and
<90i1 © Tj17%2 © Tj2>hm = <§0i1a90i2 o sz_jl>hm = <‘Pj2_j1 (Spil)’ ¢i2>hm =0,

and

<gpiloTj1,]11>hm:/<pioTjh dmz/(pih dm:/P(goi)h dm = 0.
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Lemma 3.4. There exists a countable set of functions A C L (hm)N Ker(P) with
the following property: Let w € L¥(hm), with k > 1. If for all ¢ € A we have

/wgohdm =0,

then there exists 3 € L*(hm) such that
w=p0oT
hm-almost everywhere. Moreover Ker(P)* = U(L?(hm)).

Proof. We claim that for the existence of 8 € L¥(hm) such that w = o T , it is
necessary and sufficient that for Am-almost every y € I we have

4) fH{w(x): h(z) #0 and T'(z) =y} = 1.
Indeed, if the Eq. (4) holds then for every y satisfying (4), choosing = such that
T(xz) =y and h(z) # 0 we can define

Bly) = w(z).
If y does not satisfy (4), define 8(y) = 0. Of course w = SoT hm-almost everywhere
and, since hm is an invariant measure of T, 3 belongs to L¥(hm).

On the other hand, suppose that there exists 3 € L*(hm) is such that w = o T.
Then

K ={z:w(x) =p(T(x))}
has full Am-measure. Since the support of Am is I and I C Im T it follows that
for hm-almost every y we have §4, > 1, where
Ay ={w(x): h(z) # 0 and T(z) = y}.

Suppose there is €2, with Am(Q2) > 0 such that §4, > 2 for every y € . Note that
D1 implies that f and its inverse branches are absolutely continuous functions, so
it is easy to see that there are X7 X5 such that m(X;),m(X3) > 0, T(X;) = Q
and for each y €  and ¢ = 1,2 there exists only one z; € X; such that T'(x;) = y.
Furthermore w(x1) # w(x2), h(z;) # 0. The absolutely continuity of 7' and its
inverses branches implies that

Q=T(Xi1NK)NT(XsNK) CQ

has positive measure. Let 3 € Q and z; as above. Then w(z;) = B(T(z;)) = B(y),
which contradicts w(x1) # w(xz2). This concludes the proof of the claim.
Let C; be the set of points g € I such that the function

(5) Fi(a) = / w0 oi(T) - 1y (T(2)) - h(w)dm(x)
has derivative woo; (T (xo))Ip(r,) (T (z0))h(20) at a = 9. The function in the above
integral belongs to L*(m), so by the Lebesgue diffentiation theorem the set
C =n;C; \ Y;01;
has full Lebesgue measure in I. Since T is piecewise Lipschitz we obtain that
m(T(I\ C)) =0.

Suppose that Eq. (4) does not hold for hm-almost every y € I. Then it is not
true that Eq. (4) holds for hm-almost every y € I\ T(I \ C). Since hm-almost
every point has at least one preimage « with h(z) # 0,we conclude that there exists
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yo € I\ T(I\ C) and two inverse branches of T', denoted by o; and o9 such that
yo belongs to the interior of T'(I;) N T'(12) and furthermore

w o a1(yo) # wo o2(yo), h(a1(yo)) # 0, h(02(y0)) # 0.
‘We can assume
woa1(yo) > wo az(yo),

S0

(6)

woa 10T 0o (yo) L1,y 0T o0 (yo)hooa(yo) > woaaoTooa(yo) (1, 0T o0 (yo)hooa(yo).
Since o2(yo) € C, the derivatives of the functions Fy and F» at a = o2(yo) are

the left and right hand sides of Eq. (6) respectively, so there exists € > 0 such that
for every closed non degenerate interval I satisfying

(7) 02(y0) € I> C (02(yo) — £,02(y0) +¢) N I
we have
/i wo o (Tx)lp,y o T(x) - h(z)dm(x) > /f wo oa(Tx)p () o T(x) - h(z)dm(x).

Choose an interval I satisfying Eq. (7) and small enough such that T(I5) C
T'(I1). We can assume without loss of generality that 0I; C Q. Then

/f wo oy (Tx) - h(z)dm(z) > /i w o o9(Tx) - h(z)dm(x).

Let I, := 01(T(I3)) C I,. Define ¢ as

@I hea(Tw) .
T (2@ h@) if z€h,
(8) p(r) = 1 if zelb,
0 otherwise.

Note that ¢ € L>°(hm) and ®(ph) = 0.
Hence

/wgph dm =

:[ w<,0hdm—§—/~ weh dm

Il 12

[T"| hoogoT /
= = hd hdm.
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Since o9 o T : I; — I5 is Lipschitzian and monotone increasing, we can make a
change of variables to get

|T| hooyoT /
— hd hd
/jlw|T/OO'20T| h me j2w mn
:—/woaloT-hdm+/woagoT~hdm
i2 i2

<—[ wOUQOT-hdm+/ woogod -hdm=0.
12 12

Therefore
/ wph dm # 0.

Let A be the set of functions ¢ of the form in Eq. (8), with

e The intervals I; C Ii;, j = 1,2, and 09: T(I;,) — I;, is the inverse of
T: IiQ — T(IZQ)

o T(I) =T(I).
e 0, C Q.
Then it is easy to see that A is countable and A C L>°(hm)N KerP and, by the
argument above, A has the wished property.
In particular for k& = 2 we obtain Ker(P)X C U(L?*(hm)). The inclusion

U(L*(hm)) C Ker(P)* follows from Eq. (3). O

Proposition 3.5. Let A be as in Lemma 8.4. Let u : I — R be a non constant
function in L*(hm). Then there exists ¢ € A, and an integer p > 0 such that

/u~<p0Tj-hdm:O, forall 0<j<p

and
/uchTpohdm7é0.

Proof. Suppose that, for all ¢ € A and for all £k >0

(9) /uapOT’“-hdm:().
We claim that for every n there exists 8, € L'(hm) such that
(10) w=B,0T"

Indeed, choosing k = 0 in Eq. (9) we obtain that for all p € A
/uaph dm = 0.
By Lemma 3.4, there exists 3; € L'(hm) such that

u=p1oT.

Suppose by induction that u = 3, o T", with 8, € L'(hm). By Eq. (9) when
k = n, for all ¢ € A we have

/anhdm:/@LOT”prT"-hdm:/ugoOT”-hdmzo.
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By Lemma 3.4, there exists 3,41 € L*(hm) such that
Bn = ﬂn-{-l oT.

Hence one has u = 3,41 0 T" L.
Since the measure hm is an exact measure, we can conclude that v is a constant
function. So u = 0.
O

Corollary 3.6. Let u: I — R be a non constant function in L*(hm). Then there
ezist ; € B and an integer p > 0 such that
<u,gaioTj>hm =0 forall 0<j<p

and

<’U,, ®i © Tp>hm 7é 0.
Proof. Suppose that for every ; € B and every j € N

(0T, =0
Since B is a base for Ker(P) and U7 : L?(hm) — L?(hm) is an isometry, it follows
that

/QDOTj'u~hdm=0

for every ¢ € Ker(P) and j € N. This contradicts Proposition 3.5. O

Proof of Proposition 3.1. It follows from Lemma 3.3 and Corollary 3.6 that W is a
basis of L2(hm). To construct a basis W C L°(hm), consider an enumeration of
the set A = {¢;} defined in Lemma 3.4. Apply the Gram-Schmidt process in the
sequence 1; to obtain a sequence 1; of pairwise orthogonal functions. Discarding the
null functions and normalizing the remaining functions, we obtain an orthonormal
set of functions B. Due Lemma 3.4

span(B) = span(A) = Ker P,
so B is a basis of Ker P, and
W={poT’: ¢p€B, jeNtU{l;}
is a basis of L?(hm). O

Corollary 3.7. Let u: I — R be a non constant function in L'(hm). Let B as in

the proof of Proposition 3.1. Then there exist p; € B and an integer p > 0 such
that

<u,<pioTj>hm =0 forall 0<j<p
and
(u, 05 0TP),  #0.

Proof. Suppose that for every ¢ € B and every j € N
(11) <u,cpoTj>hm:0.

Let A be as in Lemma 3.4. Since B was obtained applying the Gram-Schmidt
process to A, it follows that Eq. (11) holds for every ¢ € A. This contradicts
Proposition 3.5. (]
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From now on we assume W C L (hm). Let u € L'(hm) and consider the
Fourier coefficients of u with respect to the basis W

cij(w) = (u, U (i), = /u-cpi oT? - hdm.

Proposition 3.8. The functionals c; ; have the following properties:
(1) ¢i; is linear on L'(hm)

(2) ¢i;(U(u) =cij—1(u) for j > 1.

(3) ¢io(U(u)) =0.

(4) ¢ij(P(u)) = cijy1(u).

Proof. We have
(1) The proof is straightforward.
(2) cijluoT)=(uoT,p;0T7), = (upoTi™t) —=c;; i(u).
(3) cip(uoT) = <U(u)7§0i>hm = <“7P(<Pz‘)_>hm = (u,0),,,, = 0.
(4) Cw( u) = (P(u), U (), = (u, U (i), = cijsi(u).

O

Proposition 3.9. For every u € L' (hm) and ¢; € B we have

hm Cij = 0
J
Proof. Since hm is exact, it is mixing, so
lime; ; = hm/u ;0 T9 - hdm = 0.
J J

O

Remark 3.10. V. Baladi drew to our attention the method used by M. Pollicott [7]
to built eigenvectors of transfer operators for eigenvalues inside its essential spectral
radius in certain function spaces. In our setting the method is the following: pick
¢ € Ker(P) and |A\| < 1. Then

v:Z)\jcpoTj
j=0

is a A-eigenvector of P in L?(hm). Using Propositions 3.1 and 3.8 one can easily
show that all A-eigenvalues of P in L?(hm) , for every |\| < 1, can be built in this
way.

4. PROOF OF THEOREM 1

In this section we will study the linear operator
Lu=uoT —u

acting on functions with bounded p-variation u : I — R.

First, we will present some properties and then, at the end of this section, we
will prove the theorems announced in introduction. The following results are well
know.

Lemma 4.1. Let L be the linear operator defined above acting on L*(hm). Then:
(1) If f € Im(L), then [ fhdm = 0.
(2) Ker(L£) ={f € L*(hm) : f is constant hm-almost everywhere}.
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Corollary 4.2. Let u € L'(hm) and suppose that there exist functions v,w €
LY(hm) such that

L =u=L"w.
Then v = w + ¢ on L'(hm), for some ¢ € R. Moreover if v,w have bounded
p-variation then v = w + ¢ on I (e.c.s.).

Proof. Define v; = L" v, w; = L" “w. We will prove by induction on i that
v; = w;, if i < n and v, = w, + ¢, for some ¢ € R. Indeed, for ¢ = 0 we have
wo = vg = u. Suppose that v; = w;, i < n. Then

ﬁ(vi+1 — wi+1) =V, —W; = 0,
SO Vi1 — Wiy1 is hm-almost everywhere constant. If i + 1 = n we are done. If
14+ 1 < n then Lv;12 = v;41 and Lw; 19 = w;y1, SO

/lehdm:/lehdm:O,

which implies ¢ = 0. Now assume that u,v and w have bounded p-variation. Since
the support of hm is I and v = w+ ¢ hm-almost everywhere, we have the v = w—+c¢
on a set A C I such that for every non-empty open subset O of I we have that
ONA is a dense and uncountable subset of O. Since v and w have just a countable
number of discontinuities in I, it follows that v = w + ¢ in I(e.c.s.). (]

Lemma 4.3. Let J be an open interval as in D3 and uw € BV, 1. Then
vp, s (Lu) = vy g (u)
for every n € N.

Proof. Let Jy,Jy C J be as in D3. Since T is a homeomorphism on J; and Js, by
Remark 2.2

Vp,g(uoT) 2 vp g, (woT) +vp g, (uoT) = 2vp y(u),
SO
Upg(woT —u) > wp j(uoT) — vy s(u) > vy (u).
O
Lemma 4.4. There exists C' with the following property: Let u, : I — R, n <
M + 1, be observables with bounded p-variation, p > 1, such that for every n < M
Uy, = LUp11.
Then
|[Un| Lo (hm) < Vp,1(tn) < Cvp 1(uo)
for everyn < M.

Proof. Let J C I be an one interval as in D3. By Lemma 4.3

(12) Vp, (Un) < vp,7(uo)

for every n > 0. By D2 there is a finite collection of pairwise disjoint open intervals
Hy,...,Hy C J and j such that 77 is a homeomorphism on each H; and

(13) int I C US_,T7(H;).
We claim that for every ¢ < j and n

(14) vp,Te(Hi)(un) < QEU;D’J(Uo)
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We will prove this by induction on ¢. Of course since H; C J, Eq. (12) implies that
foreveryi=1,...,k
(15) Op,H; (Un) < vp,y(uo),

So Eq. (14) holds for £ = 0. Suppose by induction that Eq. (14) holds for ¢ < j
and every n. Since T is a homeomorphism on TZ(HZ-) and up—1 = up o T — u, we
have

Up,THl(Hi)(Un) = Up,T/f(Hi)(Un © T) < Up,Tf(Hi)(“n) + Up,Té(Hi)(Unfl)
S 2€+1UP)J(U0).
By Eq (13)
k

Vp.1(tn) = Vpint 1(n) <Y 07 (a1,) (un) < K20y 5 (u0) < K27y, 1 (uo).
i=1
Note that since u,, = U411 0T — upy1 it follows that

/unh dm =0,

€88 SUPhm Un = |Un|Loo (hm)-

Suppose that

Then

0= /unh dm > essinf u, = (ess inf u, — ess sup u,) + ess sup uy,

> _vp,l(un) + |un|L°°(hm)~
80 |tn |50 (hm) < Vp,1(un). We can obtain the same conclusion for the case
—€ss anhm Un = ‘un|L°°(hm)a
replacing u,, by —u, in the argument above. O
Proof of Theorem 1. Define by induction the (either finite or infinite) sequence
Uy : I — R of functions in the following way: wug is given. If w, is defined and

there exists a function v: I — R with bounded p-variation such that Lv = u, in
L'(hm), then define

Up41 :v—/v h dm.
Otherwise the sequence ends with wu,,. Note that
L™, = ug.
Define
My = sup{n € N: u,, is defined } € NU {o0}.
We will show that My < co. Let M € N; M < M. Recall the basis W defined in

Section 3. By Corollary 3.6 if ug is not constant almost everywhere there exist 4
and ¢ > 0 such that

Ci,j(uo):/uo%OTj-hdmZO, forall 0<j<gq

and
Ciq(uo) = /UO p; 0T hdm #0.
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By Lemma 4.4 we have that |w,|r2(hm) < [tn|ree(hm) < Cvp,1(uo), so since
lpio Tr2mmy = 1
we obtain
|ci ke (un)| = ‘/un ;o T" - hdm| < Cup 1 (up).
Using Lemma 3.8, we can now use an argument quite similar to [4]. Observe that
Cit(tun—1) = cii(upoT —up) = ¢ 1(un o T) — ¢ 1 (upn) = ¢i1—1(un) — cii(Un),

for I > 1.
For [ =0,

i 0(Un—1) = Cio(un o T —uy) = cio(un o T) — ¢io(un) = —ci0(un),

forO<n<M.
Therefore, for 0 <n < M

(16) cii(un) = ci—1(un) — ¢ 1(tup—1), for 1 > 1.

(17) Cio(Un—1) = —¢i0(tn).

Since ¢; j(up) = 0 for 0 < j < ¢, by equations (16) and (17), we can conclude
that

(18) ¢ij(u,) =0 for 0<j<qand 0<n<M.
Now, by equation (16), considering [ = ¢, we have
Civg(tn—1) = Cig—1(un) — Ci,q(tn)-
By equation (18), for every n < M
(19) Cig(un—1) = —Ciq(tn).
By equation (19), we conclude that for n < M
Ci,g(tn) = (—1)"ci,q(uo).
Considering I = ¢ + 1 in the equation (16)

Cig1(un) = (=1)"cig(uo) — ¢ig+1(Un-1) =

(20) Ciq(to) = (=1)"cig+1(un) + (=1)"ci g1 (Un—1).
Putting n =1,..., M in Eq. (20) and adding the resulting equations we obtain
(21) M - ciq(uo) = (=1)Mcigr1(unr) = cigra(uo).
Therefore,
A — ~Cuari (o) + (=1)Mci g4 (unr)
Cig(uo)
< lciari(uo)l + |cigr(unr)|
- |€i,q(uo)]

|ci g+1(uo)| + Cup 1(uo)

|€iq(uo)]
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So My is bounded. Note that by Corollary 4.2, if v,, € L'(hm) satisfies L v,, = ug
then v, = u,, +cin L'(hm), for some ¢ € R. This proves the uniqueness statements
of Theorem 1. O

5. PROOF OF THEOREM 2

Fix A < 1. Denote by Sy the linear space of the real sequences = = (27) ;e such
that there exists C' satisfying
|27 < CN.
Here we use z7 to denote the j-th element of the sequence x. Consider the linear
space {o(N) of real sequences & = (27);en such that

limz? = 0.
J

We define the operator U: £y(N) — £y(N) as
U(x) =y,
where ¢ = 0 and ¢! = 27 for j > 0.

We say that « € £y(N) is infinitely cohomologous to zero with respect to U in
¢o(N) if there exists an infinite sequence x; € £o(N), with = z, such that

(22) T; = U($i+1) — Tj41-

for every ¢ > 0.

Lemma 5.1. [2] Let © € Sy. Suppose that there exists a finite sequence x = x,
Z1,..., 2k € Lo(N) such that x; = U(xiy1) — 2441 for every i < k. Then x; € Sy,

for every i < k. If x is infinitely cohomologous to zero with respect to U in £y(N)
then . =0 = (0,0,...).

Proof. Let x; € £y(N), i < k, with xg = =, satisfying Eq. (22) for ¢ < k. One can

see that
Jj o _ D
al g =—> al.
p<j

Since lim; scf +1 =0, it follows that
Sat=o
P
consequently since xg € Sy we can prove by induction on i that
|2} ] = |fo| <GV
p>j

for some C;. We concluded that x; € Sy for every ¢ < k. For each i < k we can
associate the power series

§=0

Since x; = (xf )j € Si, the power series f; converges to a complex analytics function
on the disc with center at 0 and radius 1/X > 1. Note that the sequence U(x;)
is the sequence of coefficients of the Taylor series (centered at 0) of the function
2fi(2). So Eq. (22) yields

fi(z) = 2fir1(2) = fir1(2) = (2 = 1) fiz1(2)
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So if z¢ is infinitely cohomologous to zero we conclude that

fo(z) = (z = )" fiu(2)
for every k, where fj is defined in a disc strictly larger than the unit disc. It

follows that fék)(l) = 0 for every k, so fo(z) = 0 everywhere. So z = 29 =0 =
0,0,...). O

Proof of Theorem 2. The Corollary 4.2 gives the uniqueness of the sequence wu;.
Now suppose that ug is infinitely cohomologous to zero. So there exists a sequence
u; € L*(hm) such that

(23) U; = Ui4+1 © T— Uit1-

Consider B as in Corollary 3.7. Fix ¢ € B. Define the sequence z; = (27); as

xj:/ui~<pOTj~hdm

i

Since z are Fourier coefficients of u; € L'(hm) with respect to the Hilbert basis

W, by Proposition 3.9 we have that lim; xf = 0. By Eq. (23) and Proposition 3.8
we have
vy = U(zip1) — x4,

S0 xg is infinitely cohomologous to zero in £5(N). Note that
|zl = |/u0-<pOTj~h dm| < CN,

so xg € S). By Lemma 5.1 we have that zo = 0. That holds for every ¢ € B, so by
Corollary 3.7 the function ug is zero.
O

6. PROOF OF THEOREM 3
We first make a couple of remarks on condition (D5).

Remark 6.1. Suppose that 7" and B satisfy D5. Let h € L'(m) be a function
satisfying ®r(h) = h. Then

(24) ﬁ:/hdm-h,

where h is as in D5.1ii. Indeed, by D5.vi there exists a sequence h,, € B such that
hyp —n hin L'(hm). Furthermore since h, 1/h € B, due D5.ii there exist a,b > 0
such that

(25) 0<a<h(z)<b< o
on I. So

s P |/hn dm - h— 5 (hn) L2 () + | @5 (hn) — @5(R)| L1 (m)

< 2|k — a1 (m) + CAF |-
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Given € > 0, choose ng such that
€

~ 1~
|h - hn0|L1(m) S a|h - hn0|L1(hm) < 4

and kg such that
€

CX ol < 5

Then
|/iLdm-h—]~l|L1(m) <€

for every € > 0, so Eq. (24) holds. In particular if 7" and B satisfy D1, D4 and D5
we have those functions & in D4 and D5 coincide.

Remark 6.2. Note that D5.ii implies that
B C L*(hm).
Moreover D5.iii-v implies that
1.
—U7 (vh
S0 (0h)
converges exponentially to zero in L'(hm) and B.

Lemma 6.3. Let T be a transformation satisfying D1 and D4 and suppose that B
and T satisfy D5. Let u € B and suppose that there exists v € L'(hm) such that

u=Lv
on I. Then v coincides hm-almost everywhere with a function v; € B.

Proof. The method we are going to use here is very well known for specific kinds of
dynamical systems and observables. See for instance [5] for the case of C? piecewise
smooth expanding maps and bounded variation observables. Replacing v by

v—/uhdm]h7

we may assume without loss of generality that

/vhdm:().

u=vol —w,

Since

Applying P7, j > 1, we get
(26) Piy = Pi7ty — Ply,
Putting j =1,...,n in Eq. (26) and adding the resulting equations we obtain

v=P"v+ Z Piy
j=1
We claim that |Pjv|L1(hm) —; 0. Indeed, due D5.vi for every ¢ > 0 there exists
w € B such that [w h dm = 0 and [v — w|p1(hm) < €. Since ||P|[r1m) < 1, for
every j 4 4
|P]U - ij‘Ll(hm) < €.
Due D5 for every w € B
A 1.
Pi(w) = 1 (wh),
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and
| W9 (wh)| 11 (hmy < C|¥ (wh)[p < CN |wh]g,
we have that for j large enough
1P70| 11 (hmy < [P0 = PIw| 11 () + [P W0] 12 () < 26

This proves our claim. In particular
o0
v = Z Py,
j=1

where the convergence of the series is in L!(hm). On the other hand, by Remark 6.2
this series converges in L'(hm) and B to a function v; € B. So v = v; hm-almost
everywhere. ]

Proof of Theorem 3. Since ug € B, by D5, for every v € L (hm) we have
y/uo voT7 - hdm|= }/Pﬂ‘(uo) v+ hodm| < ON|uglz|v] o (hm)-

By Theorem 2 we have that ug is not infinitely cohomologous to zero in L'(hm).
Now suppose Lu; = ug. The uniqueness (up to a constant) of wu; follows from
Corollary 4.2. By Lemma 6.3 we have u; € B.

O

7. TOPOLOGICAL RESULTS

Proof of Theorem 4. Define g = ug o H. Then uy has bounded p-variation. By
Theorem 1 there exist bounded p-variation functions u;, ¢ < M, unique up to a
constant, such that

LHi; = 1o on L*(hm),
and
(27) La # iy + ¢ on LY (hm),

for every bounded p-variation function «. Here Lv=wvoT —wv. Since the support
of hm is I, it follows that £i; = g in I(e.c.s). Define u; = @; o H—1. Then u; has
bounded p-variation and

Llu; = ug on H(I)(e.c.s).

Suppose that there exists a function p with bounded p-variation such that Lp =
up + ¢ (e.c.s). Define p = po H. Then p has bounded p-variation and Lp=1ip+c
on L'(hm). That contradicts Eq. (27). So Lp # ups +c in an uncountable subset of
H(I). Since the discontinuities of Lp and us +c are countable, it follows that there
is a continuity point xg € H(I) of both functions such that (Lp)(zo) # uam(xo) +c.
So there is a non-empty open subset of H(I) such that Lp # ups + c. O

Proof of Theorem 5. The proof of this theorem is quite similar to the proof of
Theorem 4. Define ug = ug o H. Then @y has bounded py-variation. By Theorem
3 there exist bounded py-variation functions @;, ¢« < M, unique up to a constant,
such that B

L4; = 1y on L'(hm),
and
(28) Lo # iy + ¢ on LY (hm),
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for every a € L' (hm). Here Lv = voT —v. Since the support of hm is I, it follows
that £ii; = o in I(e.c.s). Define u; = @;0 H~*. Then u; has bounded pg-variation
and

Liu; = ug on H(I)(e.c.s).

Now we show the uniqueness of u; in the set of continuous (e.c.s.), bounded borelian
functions. If continuous (e.c.s.) bounded borelian functions v; satisfy Liv; = ug
then ¥; = v; o H are also continuous (e.c.s.) and moreover they belong to L!(hm)
and satisfies Elf;l = g, so by Theorem 3 we have that v; = 4; + ¢; for some ¢; € R,
where this equality holds in L!(hm). Since both functions ¥;, @; are continuous
(e.c.s) it follows that 0; = @; + ¢;(e.c.s.), so v; = u; + ¢;(e.c.s.).

To show conclusions A. and B., suppose that there exists a bounded borelian func-
tion p such that Lp = upr + ¢ (e.c.s). Define p = po H. Then p is also a bounded
borelian function, so it belongs to L'(km) and Lj = iips 4 ¢ (e.c.s), so since hm
has no atoms it follows that this equality holds on L'(hm). That contradicts Eq.
(28). So Lp # upr + ¢ in an uncountable subset of H(I). If p is continuous (e.c.s.)
we can now finish the proof exactly as in the proof of Theorem 4. O

Remark 7.1. One can ask why the conclusions of Theorem 5 are weaker than those
in Theorem 3. The problem is that the conjugacy between one-dimensional maps
can be singular with respect to the Lebesgue measure. Indeed that is often the case
even when the two one-dimensional maps T and T are very regular, as expanding
maps on the circle ( see [8]). In particular the conjugacy H does not in general
preserve either L'(hm), L'(m) or the space of Lebesgue measurable functions (see
[6]). So note that if in the proof of Theorem 5 we pick p to be either in L*(m) or
L' (hm) then it is not true in general that po H belongs to L!(hm). Moreover since
composition with H does not in general preserve Lebesgue measurable functions,
we need to assume that p is a Borel measurable function, so p o H is also Borel
measurable. Those are the reasons why we assume that p is bounded and borelian
in Theorem 5.

8. OBSERVABLES INFINITELY COHOMOLOGOUS TO ZERO

Consider the Banach space of summable sequences £1(N). For a sequence x =
(27)jen denote
2l = |27].
J

We define the operator U: ¢1(N) — ¢}(N) as the norm preserving map
Uz) =y,

where y° = 0 and ¢/*! = 27 for j > 0.
We say that x € ¢1(N) is infinitely cohomologous to zero with respect to U if
there exists an infinite sequence z; € £*(N), with 2 = x¢, such that

x; =U(Tig1) — Tig1-
for every ¢ > 0.

Lemma 8.1. [2] There is a non vanishing sequence x € £*(N) which is infinitely
cohomologous to zero with respect to U.
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Proof. We claim that for every k € N there exist

To,ks T1,ky -3 Thk Efl(N%

all of them with compact support, such that x8, p =1

ik = U(@iz1,k) — Tit1,k

(29) i k1 — Tiglogy <2771,

for every i < k.

The proof is by induction on k. Choose zoo = (1,0,0,0,...). Suppose by
induction we found a finite sequence x;, ¢ < k, with the properties above. Fix
N > 0. Define o 11 as T3 1 = TR g Th g = Thp — 0/N, for 1 < j < N, and
x%kﬂ = xf;k for j > N + 1. Here 6 = Zj xfck Defining

J _ D
Tht1,k+1 = — E :Ik,k-i-l?
p<j

we have that zj41 x+1 has compact support and =g g+1 = U(Zk+1,k+1) — Tht1,k+1-
Now define by induction

Ti k1 = U(@it1 k+1) — Tit1,h+1, & < k.

In particular «f, , = —9,, ., for i < k. Since 29, = —9,, , for i < k and
1‘2 kil = :102,  We have xg ,4+1 = 1. Furthermore it is not difficult to see that if N is
large enough then

i1 — Tiglogy < 27F71

)

for every ¢ < k. This completes the inductive step.
By Eq. (29), for every i there exists x; € ¢1(N) such that limy, z; = z; on /}(N).
It is easy to check that z; = U(x;11) — 2541 and 2 = 1. Pick x = zy. O

Proof of Theorem 6. Since T is topologically conjugate with 7y, = ¢z mod 1, ¢ €
Z\ {—1,0,1}, it is enough to show the Theorem 6 for T;. Choose n such that £
does not divide n. Let z = (z;); € £}(N) as in Lemma 8.1. Define

u(zx) = ij sin(2mné ).

Jj=0

The function u is continuous and non constant. Using Remark 3.2 and Proposition
3.8 one can easily show that u is infinitely cohomologous to zero. (I
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