Nonstationary mixing and the unique ergodicity of adic transformations (2009)
- Author:
- USP affiliated author: FISHER, ALBERT MEADS - IME
- School: IME
- Subject: TEORIA ERGÓDICA
- Keywords: Adic transformation; unique ergodicity; nonstationary subshift of finite type; projective metric; nonhomogeneous Markov chain
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Stochastics and Dynamics
- ISSN: 1793-6799
- Volume/Número/Paginação/Ano: v. 9, n. 3, p. 335-391, 2009
-
ABNT
FISHER, Albert Meads. Nonstationary mixing and the unique ergodicity of adic transformations. Stochastics and Dynamics, Singapore, v. 9, n. 3, p. 335-391, 2009. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701 >. -
APA
Fisher, A. M. (2009). Nonstationary mixing and the unique ergodicity of adic transformations. Stochastics and Dynamics, 9( 3), 335-391. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701 -
NLM
Fisher AM. Nonstationary mixing and the unique ergodicity of adic transformations [Internet]. Stochastics and Dynamics. 2009 ; 9( 3): 335-391.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701 -
Vancouver
Fisher AM. Nonstationary mixing and the unique ergodicity of adic transformations [Internet]. Stochastics and Dynamics. 2009 ; 9( 3): 335-391.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701 - Small-scale structure via flows
- Anosov families, renormalization and non-stationary subshifts
- Minimality and unique ergodicity for adic transformations
- The scenery flow for geometric structures on the torus: the linear setting
- Asymptotic self-similarity and order-two ergodic theorems for renewal flows
- Dynamical attraction to stable processes
- The scenery flow for hyperbolic Julia sets
- On invariant line fields
- Anosov diffeomorphisms
- Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas