Small-scale structure via flows (2004)
- Autor:
- Autor USP: FISHER, ALBERT MEADS - IME
- Unidade: IME
- Assunto: GEODÉSIA GEOMÉTRICA
- Language: Inglês
- Imprenta:
- Publisher: Birkhauser
- Publisher place: Basel
- Date published: 2004
- Source:
-
ABNT
FISHER, Albert Meads. Small-scale structure via flows. Fractal geometry and stochastics III. Tradução . Basel: Birkhauser, 2004. . Disponível em: https://www.ime.usp.br/~afisher/ps/04-fisher5.pdf. Acesso em: 14 nov. 2024. -
APA
Fisher, A. M. (2004). Small-scale structure via flows. In Fractal geometry and stochastics III. Basel: Birkhauser. Recuperado de https://www.ime.usp.br/~afisher/ps/04-fisher5.pdf -
NLM
Fisher AM. Small-scale structure via flows [Internet]. In: Fractal geometry and stochastics III. Basel: Birkhauser; 2004. [citado 2024 nov. 14 ] Available from: https://www.ime.usp.br/~afisher/ps/04-fisher5.pdf -
Vancouver
Fisher AM. Small-scale structure via flows [Internet]. In: Fractal geometry and stochastics III. Basel: Birkhauser; 2004. [citado 2024 nov. 14 ] Available from: https://www.ime.usp.br/~afisher/ps/04-fisher5.pdf - The scenery flow for geometric structures on the torus: the linear setting
- Minimality and unique ergodicity for adic transformations
- Nonstationary mixing and the unique ergodicity of adic transformations
- Anosov families, renormalization and non-stationary subshifts
- Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential
- Anosov diffeomorphisms
- Dynamical attraction to stable processes
- Asymptotic self-similarity and order-two ergodic theorems for renewal flows
- On invariant line fields
- The scenery flow for hyperbolic Julia sets
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas