The scenery flow for geometric structures on the torus: the linear setting (2001)
- Authors:
- Autor USP: FISHER, ALBERT MEADS - IME
- Unidade: IME
- DOI: 10.1142/S0252959901000425
- Assunto: TOPOLOGIA DINÂMICA
- Keywords: Modular surface; Continued fractions; Sturmian sequences; Plane tilings; Teichmüller flow; Substitution dynamical system
- Language: Inglês
- Imprenta:
- Source:
- Título: Chinese Annals of Mathematics. Series B
- ISSN: 0252-9599
- Volume/Número/Paginação/Ano: v. 22, n. 4, p. 427-470, 2001
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ARNOUX, Pierre e FISHER, Albert Meads. The scenery flow for geometric structures on the torus: the linear setting. Chinese Annals of Mathematics. Series B, v. 22, n. 4, p. 427-470, 2001Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0252959901000425. Acesso em: 27 jan. 2026. -
APA
Arnoux, P., & Fisher, A. M. (2001). The scenery flow for geometric structures on the torus: the linear setting. Chinese Annals of Mathematics. Series B, 22( 4), 427-470. doi:10.1142/S0252959901000425 -
NLM
Arnoux P, Fisher AM. The scenery flow for geometric structures on the torus: the linear setting [Internet]. Chinese Annals of Mathematics. Series B. 2001 ; 22( 4): 427-470.[citado 2026 jan. 27 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0252959901000425 -
Vancouver
Arnoux P, Fisher AM. The scenery flow for geometric structures on the torus: the linear setting [Internet]. Chinese Annals of Mathematics. Series B. 2001 ; 22( 4): 427-470.[citado 2026 jan. 27 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0252959901000425 - The self-similar dynamics of renewal processes
- Anosov and circle diffeomorphisms
- Small-scale structure via flows
- Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential
- Distribution of approximants and geodesic flows
- Minimality and unique ergodicity for adic transformations
- Dynamical attraction to stable processes
- Nonstationary mixing and the unique ergodicity of adic transformations
- On invariant line fields
- Anosov families, renormalization and non-stationary subshifts
Informações sobre o DOI: 10.1142/S0252959901000425 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
