A note on the existence of zeroes of convexly regularized sums of maximal monotone operators (2003)
- Authors:
- Autor USP: SILVA, PAULO JOSÉ DA SILVA E - IME
- Unidade: IME
- DOI: 10.1016/s0022-247x(03)00043-x
- Assunto: ANÁLISE VARIACIONAL
- Language: Inglês
- Imprenta:
- Publisher place: Maryland Heights
- Date published: 2003
- Source:
- Título: Journal of Mathematical Analysis and its Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 280, n. 2, p. 313-320, 2003
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BURACHIK, Regina Sandra e SCHEIMBERG, Susana e SILVA, Paulo J. S. A note on the existence of zeroes of convexly regularized sums of maximal monotone operators. Journal of Mathematical Analysis and its Applications, v. 280, n. 2, p. 313-320, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0022-247x(03)00043-x. Acesso em: 09 fev. 2026. -
APA
Burachik, R. S., Scheimberg, S., & Silva, P. J. S. (2003). A note on the existence of zeroes of convexly regularized sums of maximal monotone operators. Journal of Mathematical Analysis and its Applications, 280( 2), 313-320. doi:10.1016/s0022-247x(03)00043-x -
NLM
Burachik RS, Scheimberg S, Silva PJS. A note on the existence of zeroes of convexly regularized sums of maximal monotone operators [Internet]. Journal of Mathematical Analysis and its Applications. 2003 ; 280( 2): 313-320.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/s0022-247x(03)00043-x -
Vancouver
Burachik RS, Scheimberg S, Silva PJS. A note on the existence of zeroes of convexly regularized sums of maximal monotone operators [Internet]. Journal of Mathematical Analysis and its Applications. 2003 ; 280( 2): 313-320.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/s0022-247x(03)00043-x - A relaxed constant positive linear dependence constraint qualification and applications
- Proximal methods for nonlinear programming: double regularization and inexact subproblems
- Tópicos em métodos de ponto proximal
- Double-regularization proximal methods, with complementarity applications
- Exact penalties for variational inequalities with applications to nonlinear complementary problems
- A practical relative error criterion for augmented Lagrangians
- Metodo de ponto proximal e separadores
- A note on a existence of zeroes of convexly regularized sums of maximal monotone operators
- Exact penalties for variational inequalities with applications to nonlinear complementarity problems
- Nonmonotone projected gradient methods based on barrier and Euclidean distances
Informações sobre o DOI: 10.1016/s0022-247x(03)00043-x (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
