Vanishing of homology groups, Ricci estimate for submanifolds and applications (1999)
- Authors:
- Autor USP: ASPERTI, ANTONIO CARLOS - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL; HOMOLOGIA
- Language: Inglês
- Imprenta:
-
ABNT
ASPERTI, Antonio Carlos e COSTA, Ezio de Araujo. Vanishing of homology groups, Ricci estimate for submanifolds and applications. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/ee749cd8-0ee5-40c2-9222-5f576e617583/1047729.pdf. Acesso em: 10 jan. 2026. , 1999 -
APA
Asperti, A. C., & Costa, E. de A. (1999). Vanishing of homology groups, Ricci estimate for submanifolds and applications. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/ee749cd8-0ee5-40c2-9222-5f576e617583/1047729.pdf -
NLM
Asperti AC, Costa E de A. Vanishing of homology groups, Ricci estimate for submanifolds and applications [Internet]. 1999 ;[citado 2026 jan. 10 ] Available from: https://repositorio.usp.br/directbitstream/ee749cd8-0ee5-40c2-9222-5f576e617583/1047729.pdf -
Vancouver
Asperti AC, Costa E de A. Vanishing of homology groups, Ricci estimate for submanifolds and applications [Internet]. 1999 ;[citado 2026 jan. 10 ] Available from: https://repositorio.usp.br/directbitstream/ee749cd8-0ee5-40c2-9222-5f576e617583/1047729.pdf - Björling problem for spacelike, zero mean curvature surfaces in L-4
- Spacelike surfaces in L4 with degenerate Gauss map
- Cohomogeneity one hypersurfaces of the hyperbolic space
- Pseudo-parallel submanifolds of a space form
- Superfícies mínimas genéricas e elipses de curvatura generalizadas
- Conformally flat Riemannian manifolds as hypersurfaces of the light cone
- Generic minimal surfaces
- Cohomogeneity one manifolds and hipersurfaces of revolution
- Topologia e geometria das curvas planas ou 'pt ind 1' (s pot 1) aproximadamente z
- A note on the minimal immersions of the two-sphere
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1047729.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas