Conformally flat Riemannian manifolds as hypersurfaces of the light cone (1985)
- Authors:
- Autor USP: ASPERTI, ANTONIO CARLOS - IME
- Unidade: IME
- Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA
- Language: Inglês
- Imprenta:
-
ABNT
ASPERTI, Antonio Carlos e DAJCZER, Marcos. Conformally flat Riemannian manifolds as hypersurfaces of the light cone. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/b25f622f-fd35-4684-b142-b644c6a8170f/318465.pdf. Acesso em: 28 dez. 2025. , 1985 -
APA
Asperti, A. C., & Dajczer, M. (1985). Conformally flat Riemannian manifolds as hypersurfaces of the light cone. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/b25f622f-fd35-4684-b142-b644c6a8170f/318465.pdf -
NLM
Asperti AC, Dajczer M. Conformally flat Riemannian manifolds as hypersurfaces of the light cone [Internet]. 1985 ;[citado 2025 dez. 28 ] Available from: https://repositorio.usp.br/directbitstream/b25f622f-fd35-4684-b142-b644c6a8170f/318465.pdf -
Vancouver
Asperti AC, Dajczer M. Conformally flat Riemannian manifolds as hypersurfaces of the light cone [Internet]. 1985 ;[citado 2025 dez. 28 ] Available from: https://repositorio.usp.br/directbitstream/b25f622f-fd35-4684-b142-b644c6a8170f/318465.pdf - Generic minimal surfaces
- Compact homogeneous Einstein manifolds in codimension two
- Spacelike surfaces in 'L POT 4 ' with prescribed Gauss map and nonzero mean curvature
- Ruled Weingarten surfaces in a 3-dimensional space form
- Vanishing of homology groups, Ricci estimate for submanifolds and applications
- Pseudo-parallel submanifolds of a space form
- Topologia e geometria das curvas planas ou 'pt ind 1' (s pot 1) aproximadamente z
- Pseudo-parallel immersions in space forms
- Superfícies mínimas genéricas e elipses de curvatura generalizadas
- A note on the minimal immersions of the two-sphere
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 318465.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas