Vanishing of homology groups, Ricci estimate for submanifolds and applications (2001)
- Authors:
- Autor USP: ASPERTI, ANTONIO CARLOS - IME
- Unidade: IME
- Assunto: GEOMETRIA DIFERENCIAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Kodai Mathematical Journal
- ISSN: 0386-5991
- Volume/Número/Paginação/Ano: v. 24, n. 3, p. 313-328, 2001
-
ABNT
ASPERTI, Antonio Carlos e COSTA, Ézio de Araujo. Vanishing of homology groups, Ricci estimate for submanifolds and applications. Kodai Mathematical Journal, v. 24, n. 3, p. 313-328, 2001Tradução . . Disponível em: https://www.jstage.jst.go.jp/article/kodaimath1978/24/3/24_3_313/_pdf. Acesso em: 27 dez. 2025. -
APA
Asperti, A. C., & Costa, É. de A. (2001). Vanishing of homology groups, Ricci estimate for submanifolds and applications. Kodai Mathematical Journal, 24( 3), 313-328. Recuperado de https://www.jstage.jst.go.jp/article/kodaimath1978/24/3/24_3_313/_pdf -
NLM
Asperti AC, Costa É de A. Vanishing of homology groups, Ricci estimate for submanifolds and applications [Internet]. Kodai Mathematical Journal. 2001 ; 24( 3): 313-328.[citado 2025 dez. 27 ] Available from: https://www.jstage.jst.go.jp/article/kodaimath1978/24/3/24_3_313/_pdf -
Vancouver
Asperti AC, Costa É de A. Vanishing of homology groups, Ricci estimate for submanifolds and applications [Internet]. Kodai Mathematical Journal. 2001 ; 24( 3): 313-328.[citado 2025 dez. 27 ] Available from: https://www.jstage.jst.go.jp/article/kodaimath1978/24/3/24_3_313/_pdf - Generic minimal surfaces
- Compact homogeneous Einstein manifolds in codimension two
- Spacelike surfaces in 'L POT 4 ' with prescribed Gauss map and nonzero mean curvature
- Ruled Weingarten surfaces in a 3-dimensional space form
- Pseudo-parallel submanifolds of a space form
- Topologia e geometria das curvas planas ou 'pt ind 1' (s pot 1) aproximadamente z
- Pseudo-parallel immersions in space forms
- Superfícies mínimas genéricas e elipses de curvatura generalizadas
- A note on the minimal immersions of the two-sphere
- Conformally flat Riemannian manifolds as hypersurfaces of the light cone
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas