Shortening null geodesics in Lorentzian manifolds: applications to closed light rays (1996)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL; PROBLEMAS VARIACIONAIS
- Language: Inglês
- Imprenta:
-
ABNT
MASIELLO, Antonio e PICCIONE, Paolo. Shortening null geodesics in Lorentzian manifolds: applications to closed light rays. . São Paulo: IME-USP. . Acesso em: 26 jan. 2026. , 1996 -
APA
Masiello, A., & Piccione, P. (1996). Shortening null geodesics in Lorentzian manifolds: applications to closed light rays. São Paulo: IME-USP. -
NLM
Masiello A, Piccione P. Shortening null geodesics in Lorentzian manifolds: applications to closed light rays. 1996 ;[citado 2026 jan. 26 ] -
Vancouver
Masiello A, Piccione P. Shortening null geodesics in Lorentzian manifolds: applications to closed light rays. 1996 ;[citado 2026 jan. 26 ] - Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results
- A variational theory for hight rays on Lorentz manifolds
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
- Naked singularities formation in perfect fluid collapse
- On the normal exponential map in singular conformal metrics
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
