Filtros : "Indexado no MathSciNet" "TEORIA ERGÓDICA" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 09 out. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 out. 09 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 out. 09 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 45, n. 5, p. 1444-1460, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 09 out. 2025.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2025). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 45( 5), 1444-1460. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 09 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 09 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALCEDO, Graccyela. Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, v. 56, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00574-025-00461-8. Acesso em: 09 out. 2025.
    • APA

      Salcedo, G. (2025). Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, 56( 3), 1-31. doi:10.1007/s00574-025-00461-8
    • NLM

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
    • Vancouver

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
  • Source: Journal of Modern Dynamics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ANÁLISE FUNCIONAL, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Deformation theory of one-dimensional systems. Journal of Modern Dynamics, v. 21, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.3934/jmd.2025001. Acesso em: 09 out. 2025.
    • APA

      Smania, D. (2025). Deformation theory of one-dimensional systems. Journal of Modern Dynamics, 21, 1-20. doi:10.3934/jmd.2025001
    • NLM

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 out. 09 ] Available from: https://doi.org/10.3934/jmd.2025001
    • Vancouver

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 out. 09 ] Available from: https://doi.org/10.3934/jmd.2025001
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COATES, Douglas e LUZZATTO, Stefano. Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, v. 405, n. 4, p. 1-34, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00220-024-04957-0. Acesso em: 09 out. 2025.
    • APA

      Coates, D., & Luzzatto, S. (2024). Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, 405( 4), 1-34. doi:10.1007/s00220-024-04957-0
    • NLM

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
    • Vancouver

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
  • Source: Bulletin of the London Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e ZHANG, Jinhua. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, v. 55, n. 3, p. 1404-1418, 2023Tradução . . Disponível em: https://doi.org/10.1112/blms.12800. Acesso em: 09 out. 2025.
    • APA

      Tahzibi, A., & Zhang, J. (2023). Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, 55( 3), 1404-1418. doi:10.1112/blms.12800
    • NLM

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2025 out. 09 ] Available from: https://doi.org/10.1112/blms.12800
    • Vancouver

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2025 out. 09 ] Available from: https://doi.org/10.1112/blms.12800
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, NÚMEROS COMPLEXOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVEZ, Gabriela e SMANIA, Daniel e YAMPOLSKY, Michael. Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, v. 53, n. 3, p. Se 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00574-022-00295-8. Acesso em: 09 out. 2025.
    • APA

      Estevez, G., Smania, D., & Yampolsky, M. (2022). Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, 53( 3), Se 2022. doi:10.1007/s00574-022-00295-8
    • NLM

      Estevez G, Smania D, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
    • Vancouver

      Estevez G, Smania D, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 09 out. 2025.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2025 out. 09 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Annales Scientifiques de l'École Normale Supérieure. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS, DINÂMICA DE FOLHEAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Jérôme e FISHER, Todd e TAHZIBI, Ali. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, v. 55, n. 4, p. 969-1002, 2022Tradução . . Disponível em: https://doi.org/10.24033/asens.2511. Acesso em: 09 out. 2025.
    • APA

      Buzzi, J., Fisher, T., & Tahzibi, A. (2022). A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, 55( 4), 969-1002. doi:10.24033/asens.2511
    • NLM

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2025 out. 09 ] Available from: https://doi.org/10.24033/asens.2511
    • Vancouver

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2025 out. 09 ] Available from: https://doi.org/10.24033/asens.2511
  • Source: Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e CARVALHO, Yagor Romano e LLIBRE, Jaume. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres. Dynamical Systems, v. 37, n. 4, p. 710-728, 2022Tradução . . Disponível em: https://doi.org/10.1080/14689367.2022.2122779. Acesso em: 09 out. 2025.
    • APA

      Buzzi, C. A., Carvalho, Y. R., & Llibre, J. (2022). Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres. Dynamical Systems, 37( 4), 710-728. doi:10.1080/14689367.2022.2122779
    • NLM

      Buzzi CA, Carvalho YR, Llibre J. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres [Internet]. Dynamical Systems. 2022 ; 37( 4): 710-728.[citado 2025 out. 09 ] Available from: https://doi.org/10.1080/14689367.2022.2122779
    • Vancouver

      Buzzi CA, Carvalho YR, Llibre J. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres [Internet]. Dynamical Systems. 2022 ; 37( 4): 710-728.[citado 2025 out. 09 ] Available from: https://doi.org/10.1080/14689367.2022.2122779
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 09 out. 2025.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 out. 09 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 out. 09 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Journal of the European Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Tiago e STRIEN, Sebastian van e TANZI, Matteo. Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers. Journal of the European Mathematical Society, v. 22, n. 7, p. 2183–2252, 2020Tradução . . Disponível em: https://doi.org/10.4171/JEMS/963. Acesso em: 09 out. 2025.
    • APA

      Pereira, T., Strien, S. van, & Tanzi, M. (2020). Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers. Journal of the European Mathematical Society, 22( 7), 2183–2252. doi:10.4171/JEMS/963
    • NLM

      Pereira T, Strien S van, Tanzi M. Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers [Internet]. Journal of the European Mathematical Society. 2020 ; 22( 7): 2183–2252.[citado 2025 out. 09 ] Available from: https://doi.org/10.4171/JEMS/963
    • Vancouver

      Pereira T, Strien S van, Tanzi M. Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers [Internet]. Journal of the European Mathematical Society. 2020 ; 22( 7): 2183–2252.[citado 2025 out. 09 ] Available from: https://doi.org/10.4171/JEMS/963
  • Source: Annals of Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Solenoidal attractors with bounded combinatorics are shy. Annals of Mathematics, v. 191, n. Ja 2020, p. 1-79, 2020Tradução . . Disponível em: https://doi.org/10.4007/annals.2020.191.1.1. Acesso em: 09 out. 2025.
    • APA

      Smania, D. (2020). Solenoidal attractors with bounded combinatorics are shy. Annals of Mathematics, 191( Ja 2020), 1-79. doi:10.4007/annals.2020.191.1.1
    • NLM

      Smania D. Solenoidal attractors with bounded combinatorics are shy [Internet]. Annals of Mathematics. 2020 ; 191( Ja 2020): 1-79.[citado 2025 out. 09 ] Available from: https://doi.org/10.4007/annals.2020.191.1.1
    • Vancouver

      Smania D. Solenoidal attractors with bounded combinatorics are shy [Internet]. Annals of Mathematics. 2020 ; 191( Ja 2020): 1-79.[citado 2025 out. 09 ] Available from: https://doi.org/10.4007/annals.2020.191.1.1
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Amanda de e SMANIA, Daniel. Central limit theorem for generalized Weierstrass functions. Stochastics and Dynamics, v. 19, n. 1, p. 1950002-1-1950002-18, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0219493719500023. Acesso em: 09 out. 2025.
    • APA

      Lima, A. de, & Smania, D. (2019). Central limit theorem for generalized Weierstrass functions. Stochastics and Dynamics, 19( 1), 1950002-1-1950002-18. doi:10.1142/S0219493719500023
    • NLM

      Lima A de, Smania D. Central limit theorem for generalized Weierstrass functions [Internet]. Stochastics and Dynamics. 2019 ; 19( 1): 1950002-1-1950002-18.[citado 2025 out. 09 ] Available from: https://doi.org/10.1142/S0219493719500023
    • Vancouver

      Lima A de, Smania D. Central limit theorem for generalized Weierstrass functions [Internet]. Stochastics and Dynamics. 2019 ; 19( 1): 1950002-1-1950002-18.[citado 2025 out. 09 ] Available from: https://doi.org/10.1142/S0219493719500023
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e YANG, Jiagang. Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, v. 371, n. 2, p. 1231-1251, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7278. Acesso em: 09 out. 2025.
    • APA

      Tahzibi, A., & Yang, J. (2019). Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, 371( 2), 1231-1251. doi:10.1090/tran/7278
    • NLM

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2025 out. 09 ] Available from: https://doi.org/10.1090/tran/7278
    • Vancouver

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2025 out. 09 ] Available from: https://doi.org/10.1090/tran/7278
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2453-2463, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14422. Acesso em: 09 out. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2019). A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, 147( 6), 2453-2463. doi:10.1090/proc/14422
    • NLM

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2025 out. 09 ] Available from: https://doi.org/10.1090/proc/14422
    • Vancouver

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2025 out. 09 ] Available from: https://doi.org/10.1090/proc/14422
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, INVARIANTES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Shy shadows of infinite-dimensional partially hyperbolic invariant sets. Ergodic Theory and Dynamical Systems, v. 39, n. 5, p. 1361-1400, 2019Tradução . . Disponível em: https://doi.org/10.1017/etds.2017.65. Acesso em: 09 out. 2025.
    • APA

      Smania, D. (2019). Shy shadows of infinite-dimensional partially hyperbolic invariant sets. Ergodic Theory and Dynamical Systems, 39( 5), 1361-1400. doi:10.1017/etds.2017.65
    • NLM

      Smania D. Shy shadows of infinite-dimensional partially hyperbolic invariant sets [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 5): 1361-1400.[citado 2025 out. 09 ] Available from: https://doi.org/10.1017/etds.2017.65
    • Vancouver

      Smania D. Shy shadows of infinite-dimensional partially hyperbolic invariant sets [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 5): 1361-1400.[citado 2025 out. 09 ] Available from: https://doi.org/10.1017/etds.2017.65
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 09 out. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 out. 09 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 out. 09 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, v. 329, p. 329-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.02.019. Acesso em: 09 out. 2025.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2018). On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, 329, 329-360. doi:10.1016/j.aim.2018.02.019
    • NLM

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2025 out. 09 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
    • Vancouver

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2025 out. 09 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 09 out. 2025.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 out. 09 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 out. 09 ] Available from: https://doi.org/10.12775/TMNA.2017.051

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025