Filtros : "Financiamento Russian Foundation for Basic Research" "Shestakov, Ivan P" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIKHALEV, Alexander A. e SHESTAKOV, Ivan P. PBW-pairs of varieties of linear algebras. Communications in Algebra, v. 42, n. 2, p. 667-687, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.720867. Acesso em: 15 nov. 2025.
    • APA

      Mikhalev, A. A., & Shestakov, I. P. (2014). PBW-pairs of varieties of linear algebras. Communications in Algebra, 42( 2), 667-687. doi:10.1080/00927872.2012.720867
    • NLM

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00927872.2012.720867
    • Vancouver

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00927872.2012.720867
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, v. 23, n. 2, p. 407-431, 2013Tradução . . Disponível em: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf. Acesso em: 15 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, 23( 2), 407-431. Recuperado de https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • NLM

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 nov. 15 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 nov. 15 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA DIFERENCIAL, ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e POPOV, A. A e SHESTAKOV, Ivan P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, v. 52, n. 4, p. 277-289, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10469-013-9242-9. Acesso em: 15 nov. 2025.
    • APA

      Zhelyabin, V. N., Popov, A. A., & Shestakov, I. P. (2013). The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, 52( 4), 277-289. doi:10.1007/s10469-013-9242-9
    • NLM

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
    • Vancouver

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, NÚMEROS DE FIBONACCI

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Self-similar associative algebras. Journal of Algebra, v. 390, p. 100-125, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2013.04.029. Acesso em: 15 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). Self-similar associative algebras. Journal of Algebra, 390, 100-125. doi:10.1016/j.jalgebra.2013.04.029
    • NLM

      Petrogradsky V, Shestakov IP. Self-similar associative algebras [Internet]. Journal of Algebra. 2013 ; 390 100-125.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.04.029
    • Vancouver

      Petrogradsky V, Shestakov IP. Self-similar associative algebras [Internet]. Journal of Algebra. 2013 ; 390 100-125.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.04.029
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS NÚMEROS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPATIN, Artem A e SHESTAKOV, Ivan P. Associative nil-algebras over finite fields. International Journal of Algebra and Computation, v. 23, n. 8, p. 1881-1894, 2013Tradução . . Disponível em: https://doi.org/10.1142/S0218196713500471. Acesso em: 15 nov. 2025.
    • APA

      Lopatin, A. A., & Shestakov, I. P. (2013). Associative nil-algebras over finite fields. International Journal of Algebra and Computation, 23( 8), 1881-1894. doi:10.1142/S0218196713500471
    • NLM

      Lopatin AA, Shestakov IP. Associative nil-algebras over finite fields [Internet]. International Journal of Algebra and Computation. 2013 ; 23( 8): 1881-1894.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1142/S0218196713500471
    • Vancouver

      Lopatin AA, Shestakov IP. Associative nil-algebras over finite fields [Internet]. International Journal of Algebra and Computation. 2013 ; 23( 8): 1881-1894.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1142/S0218196713500471
  • Source: Siberian Mathematical Journal. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, Alexander P e SHESTAKOV, Ivan P. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0. Siberian Mathematical Journal, v. 54, n. 2, p. 301-316, 2013Tradução . . Disponível em: https://doi.org/10.1134/S0037446613020134. Acesso em: 15 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2013). Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0. Siberian Mathematical Journal, 54( 2), 301-316. doi:10.1134/S0037446613020134
    • NLM

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0 [Internet]. Siberian Mathematical Journal. 2013 ; 54( 2): 301-316.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1134/S0037446613020134
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0 [Internet]. Siberian Mathematical Journal. 2013 ; 54( 2): 301-316.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1134/S0037446613020134
  • Source: Advances in Applied Mathematics. Unidade: IME

    Assunto: POLINÔMIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBRUNO, Antonio e SHESTAKOV, Ivan P e ZAICEV, Mikhail. Finite-dimensional non-associative algebras and codimension growth. Advances in Applied Mathematics, v. 47, n. 1, p. 125-139, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.aam.2010.04.007. Acesso em: 15 nov. 2025.
    • APA

      Giambruno, A., Shestakov, I. P., & Zaicev, M. (2011). Finite-dimensional non-associative algebras and codimension growth. Advances in Applied Mathematics, 47( 1), 125-139. doi:10.1016/j.aam.2010.04.007
    • NLM

      Giambruno A, Shestakov IP, Zaicev M. Finite-dimensional non-associative algebras and codimension growth [Internet]. Advances in Applied Mathematics. 2011 ; 47( 1): 125-139.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.aam.2010.04.007
    • Vancouver

      Giambruno A, Shestakov IP, Zaicev M. Finite-dimensional non-associative algebras and codimension growth [Internet]. Advances in Applied Mathematics. 2011 ; 47( 1): 125-139.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.aam.2010.04.007
  • Source: Communications in Algebra. Unidade: IME

    Assunto: DIMENSÃO INFINITA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikkhail. Polynomial identities of finite dimensional simple algebras. Communications in Algebra, v. 39, n. 3, p. 929-932, 2011Tradução . . Disponível em: https://doi.org/10.1080/00927870903527600. Acesso em: 15 nov. 2025.
    • APA

      Shestakov, I. P., & Zaicev, M. (2011). Polynomial identities of finite dimensional simple algebras. Communications in Algebra, 39( 3), 929-932. doi:10.1080/00927870903527600
    • NLM

      Shestakov IP, Zaicev M. Polynomial identities of finite dimensional simple algebras [Internet]. Communications in Algebra. 2011 ; 39( 3): 929-932.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00927870903527600
    • Vancouver

      Shestakov IP, Zaicev M. Polynomial identities of finite dimensional simple algebras [Internet]. Communications in Algebra. 2011 ; 39( 3): 929-932.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00927870903527600
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, Alexander P e SHESTAKOV, Ivan P. Noncommutative Jordan superalgebras of degree n > 2. Algebra and Logic, v. 49, n. 1, p. 26-59, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10469-010-9077-6. Acesso em: 15 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2010). Noncommutative Jordan superalgebras of degree n > 2. Algebra and Logic, 49( 1), 26-59. doi:10.1007/s10469-010-9077-6
    • NLM

      Pozhidaev AP, Shestakov IP. Noncommutative Jordan superalgebras of degree n > 2 [Internet]. Algebra and Logic. 2010 ; 49( 1): 26-59.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-010-9077-6
    • Vancouver

      Pozhidaev AP, Shestakov IP. Noncommutative Jordan superalgebras of degree n > 2 [Internet]. Algebra and Logic. 2010 ; 49( 1): 26-59.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-010-9077-6
  • Source: Groups Geometry and Dynamics. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor M. e SHESTAKOV, Ivan P e ZELMANOV, Efim. Nil graded self-similar algebras. Groups Geometry and Dynamics, v. 4, n. 4, p. 873-900, 2010Tradução . . Disponível em: https://doi.org/10.4171/GGD/112. Acesso em: 15 nov. 2025.
    • APA

      Petrogradsky, V. M., Shestakov, I. P., & Zelmanov, E. (2010). Nil graded self-similar algebras. Groups Geometry and Dynamics, 4( 4), 873-900. doi:10.4171/GGD/112
    • NLM

      Petrogradsky VM, Shestakov IP, Zelmanov E. Nil graded self-similar algebras [Internet]. Groups Geometry and Dynamics. 2010 ; 4( 4): 873-900.[citado 2025 nov. 15 ] Available from: https://doi.org/10.4171/GGD/112
    • Vancouver

      Petrogradsky VM, Shestakov IP, Zelmanov E. Nil graded self-similar algebras [Internet]. Groups Geometry and Dynamics. 2010 ; 4( 4): 873-900.[citado 2025 nov. 15 ] Available from: https://doi.org/10.4171/GGD/112
  • Source: Journal of Algebra. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P e SHESTAKOV, Ivan P. Structurable superalgebras of Cartan type. Journal of Algebra, v. 323, n. 12, p. 3230-3251, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2010.04.003. Acesso em: 15 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2010). Structurable superalgebras of Cartan type. Journal of Algebra, 323( 12), 3230-3251. doi:10.1016/j.jalgebra.2010.04.003
    • NLM

      Pozhidaev AP, Shestakov IP. Structurable superalgebras of Cartan type [Internet]. Journal of Algebra. 2010 ; 323( 12): 3230-3251.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2010.04.003
    • Vancouver

      Pozhidaev AP, Shestakov IP. Structurable superalgebras of Cartan type [Internet]. Journal of Algebra. 2010 ; 323( 12): 3230-3251.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jalgebra.2010.04.003
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, v. 19, n. 4, p. 697-724, 2009Tradução . . Disponível em: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf. Acesso em: 15 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2009). Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, 19( 4), 697-724. Recuperado de https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
    • NLM

      Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2025 nov. 15 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2025 nov. 15 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMANOVSKII, N. S e SHESTAKOV, Ivan P. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, v. 47, n. 4, p. 269-278, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10469-008-9018-9. Acesso em: 15 nov. 2025.
    • APA

      Romanovskii, N. S., & Shestakov, I. P. (2008). Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, 47( 4), 269-278. doi:10.1007/s10469-008-9018-9
    • NLM

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
    • Vancouver

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-008-9018-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025