Examples of Self-Iterating Lie Algebras, 2 (2009)
- Authors:
- Autor USP: CHESTAKOV, IVAN - IME
- Unidade: IME
- Subjects: ÁLGEBRAS DE LIE; NÚMEROS DE FIBONACCI
- Keywords: Restricted Lie algebras; growth; Grigorchuk group; Gupta-Sidki group
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Lie Theory
- ISSN: 0949-5932
- Volume/Número/Paginação/Ano: v. 19, n. 4, p. 697-724, 2009
-
ABNT
PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, v. 19, n. 4, p. 697-724, 2009Tradução . . Disponível em: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf. Acesso em: 28 jan. 2026. -
APA
Petrogradsky, V., & Shestakov, I. P. (2009). Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, 19( 4), 697-724. Recuperado de https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf -
NLM
Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2026 jan. 28 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf -
Vancouver
Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2026 jan. 28 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf - On speciality of binary-Lie algebras
- Simple special Jordan superalgebras with associative even part
- Irreducible bimodules over alternative algebras and superalgebras
- Jordan gradings on associative algebras
- On the Lie structure of the skew elements of a prime superalgebra with superinvolution
- Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras
- Jordan superalgebras defined by brackets
- On speciality of Bernstein Jordan algebras
- Noncommutative Jordan superalgebras of degree n > 2
- Self-iterating Lie and associative algebras
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3047780.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
