Filtros : "PROGRAMAÇÃO QUADRÁTICA" "HAESER, GABRIEL" Limpar

Filtros



Refine with date range


  • Source: Book of Abstracts. Conference titles: Carioca Workshop on Optimization and Applications - CariOPT. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, APRENDIZADO COMPUTACIONAL, ALGORITMOS, PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO QUADRÁTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. Semismooth Newton method for projection equations [resumo]. 2025, Anais.. Rio de Janeiro: Fundação Getulio Vargas FGV, 2025. p. 5. Disponível em: https://drive.google.com/file/d/1IMnaoGpl1jeiG5dhzmGoqnTIaQZBCRYo/view?usp=sharing. Acesso em: 11 nov. 2025.
    • APA

      Haeser, G. (2025). Semismooth Newton method for projection equations [resumo]. In Book of Abstracts (p. 5). Rio de Janeiro: Fundação Getulio Vargas FGV. Recuperado de https://drive.google.com/file/d/1IMnaoGpl1jeiG5dhzmGoqnTIaQZBCRYo/view?usp=sharing
    • NLM

      Haeser G. Semismooth Newton method for projection equations [resumo] [Internet]. Book of Abstracts. 2025 ; 5.[citado 2025 nov. 11 ] Available from: https://drive.google.com/file/d/1IMnaoGpl1jeiG5dhzmGoqnTIaQZBCRYo/view?usp=sharing
    • Vancouver

      Haeser G. Semismooth Newton method for projection equations [resumo] [Internet]. Book of Abstracts. 2025 ; 5.[citado 2025 nov. 11 ] Available from: https://drive.google.com/file/d/1IMnaoGpl1jeiG5dhzmGoqnTIaQZBCRYo/view?usp=sharing
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: MÉTODOS DE PONTOS INTERIORES, PROGRAMAÇÃO QUADRÁTICA, PROGRAMAÇÃO CONVEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger e GONZAGA, Clovis Caesar e HAESER, Gabriel. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, v. 162, n. 3, p. 705-717, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10957-013-0492-4. Acesso em: 11 nov. 2025.
    • APA

      Behling, R., Gonzaga, C. C., & Haeser, G. (2014). Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, 162( 3), 705-717. doi:10.1007/s10957-013-0492-4
    • NLM

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10957-013-0492-4
    • Vancouver

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10957-013-0492-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025