Filtros : "Sensors" "UEYAMA, JO" Limpar

Filtros



Refine with date range


  • Source: Sensors. Unidade: ICMC

    Subjects: ENCHENTES URBANAS, REDES NEURAIS, INTERNET DAS COISAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES JUNIOR, Francisco Erivaldo et al. Memory-based pruning of deep neural networks for IoT devices applied to flood detection. Sensors, v. 21, n. 22, p. 1-18, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21227506. Acesso em: 10 nov. 2025.
    • APA

      Fernandes Junior, F. E., Nonato, L. G., Ranieri, C. M., & Ueyama, J. (2021). Memory-based pruning of deep neural networks for IoT devices applied to flood detection. Sensors, 21( 22), 1-18. doi:10.3390/s21227506
    • NLM

      Fernandes Junior FE, Nonato LG, Ranieri CM, Ueyama J. Memory-based pruning of deep neural networks for IoT devices applied to flood detection [Internet]. Sensors. 2021 ; 21( 22): 1-18.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s21227506
    • Vancouver

      Fernandes Junior FE, Nonato LG, Ranieri CM, Ueyama J. Memory-based pruning of deep neural networks for IoT devices applied to flood detection [Internet]. Sensors. 2021 ; 21( 22): 1-18.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s21227506
  • Source: Sensors. Unidade: ICMC

    Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE, INTERNET DAS COISAS, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo Antonio et al. How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data. Sensors, v. 18, n. 3, p. 1-20, 2018Tradução . . Disponível em: https://doi.org/10.3390/s18030907. Acesso em: 10 nov. 2025.
    • APA

      Furquim, G. A., Rocha Filho, G. P., Jalali, R., Pessin, G., Pazzi, R. W., & Ueyama, J. (2018). How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data. Sensors, 18( 3), 1-20. doi:10.3390/s18030907
    • NLM

      Furquim GA, Rocha Filho GP, Jalali R, Pessin G, Pazzi RW, Ueyama J. How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data [Internet]. Sensors. 2018 ;18( 3): 1-20.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s18030907
    • Vancouver

      Furquim GA, Rocha Filho GP, Jalali R, Pessin G, Pazzi RW, Ueyama J. How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data [Internet]. Sensors. 2018 ;18( 3): 1-20.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s18030907
  • Source: Sensors. Unidade: ICMC

    Subjects: BIG DATA, SENSOR, DESASTRES AMBIENTAIS, TEMPO-REAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASSIS, Luiz Fernando F. G. de et al. A service-oriented Middleware for integrated management of crowdsourced and sensor data streams in disaster management. Sensors, v. 18, n. 6, p. 1-27, 2018Tradução . . Disponível em: https://doi.org/10.3390/s18061689. Acesso em: 10 nov. 2025.
    • APA

      Assis, L. F. F. G. de, Horita, F. E. A., Freitas, E. P. de, Ueyama, J., & Albuquerque, J. P. de. (2018). A service-oriented Middleware for integrated management of crowdsourced and sensor data streams in disaster management. Sensors, 18( 6), 1-27. doi:10.3390/s18061689
    • NLM

      Assis LFFG de, Horita FEA, Freitas EP de, Ueyama J, Albuquerque JP de. A service-oriented Middleware for integrated management of crowdsourced and sensor data streams in disaster management [Internet]. Sensors. 2018 ; 18( 6): 1-27.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s18061689
    • Vancouver

      Assis LFFG de, Horita FEA, Freitas EP de, Ueyama J, Albuquerque JP de. A service-oriented Middleware for integrated management of crowdsourced and sensor data streams in disaster management [Internet]. Sensors. 2018 ; 18( 6): 1-27.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s18061689
  • Source: Sensors. Unidade: ICMC

    Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA FILHO, Geraldo P et al. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques. Sensors, v. 14, n. 1, p. 848-867, 2014Tradução . . Disponível em: https://doi.org/10.3390/s140100848. Acesso em: 10 nov. 2025.
    • APA

      Rocha Filho, G. P., Ueyama, J., Villas, L. A., Pinto, A. R., Gonçalves, V. P., Pessin, G., et al. (2014). NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques. Sensors, 14( 1), 848-867. doi:10.3390/s140100848
    • NLM

      Rocha Filho GP, Ueyama J, Villas LA, Pinto AR, Gonçalves VP, Pessin G, Pazzi RW, Braun T. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques [Internet]. Sensors. 2014 ; 14( 1): 848-867.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s140100848
    • Vancouver

      Rocha Filho GP, Ueyama J, Villas LA, Pinto AR, Gonçalves VP, Pessin G, Pazzi RW, Braun T. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques [Internet]. Sensors. 2014 ; 14( 1): 848-867.[citado 2025 nov. 10 ] Available from: https://doi.org/10.3390/s140100848

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025