Filtros : "Journal of Statistical Physics" "Iambartsev, Anatoli" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, M e SUHOV, Y e IAMBARTSEV, Anatoli. A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations. Journal of Statistical Physics, v. 150, n. 4, p. 671-677, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-013-0698-8. Acesso em: 15 nov. 2025.
    • APA

      Kelbert, M., Suhov, Y., & Iambartsev, A. (2013). A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations. Journal of Statistical Physics, 150( 4), 671-677. doi:10.1007/s10955-013-0698-8
    • NLM

      Kelbert M, Suhov Y, Iambartsev A. A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations [Internet]. Journal of Statistical Physics. 2013 ; 150( 4): 671-677.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-013-0698-8
    • Vancouver

      Kelbert M, Suhov Y, Iambartsev A. A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations [Internet]. Journal of Statistical Physics. 2013 ; 150( 4): 671-677.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-013-0698-8
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHCHERBAKOV, Vadim e IAMBARTSEV, Anatoli. On equilibrium distribution of a reversible growth model. Journal of Statistical Physics, v. 148, n. 1, p. 148-153, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0530-x. Acesso em: 15 nov. 2025.
    • APA

      Shcherbakov, V., & Iambartsev, A. (2012). On equilibrium distribution of a reversible growth model. Journal of Statistical Physics, 148( 1), 148-153. doi:10.1007/s10955-012-0530-x
    • NLM

      Shcherbakov V, Iambartsev A. On equilibrium distribution of a reversible growth model [Internet]. Journal of Statistical Physics. 2012 ; 148( 1): 148-153.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0530-x
    • Vancouver

      Shcherbakov V, Iambartsev A. On equilibrium distribution of a reversible growth model [Internet]. Journal of Statistical Physics. 2012 ; 148( 1): 148-153.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0530-x
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KRIKUN, Maxim e IAMBARTSEV, Anatoli. Phase transition for the Ising model on the critical Lorentzian triangulation. Journal of Statistical Physics, v. 148, n. 1, p. 422-439, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0548-0. Acesso em: 15 nov. 2025.
    • APA

      Krikun, M., & Iambartsev, A. (2012). Phase transition for the Ising model on the critical Lorentzian triangulation. Journal of Statistical Physics, 148( 1), 422-439. doi:10.1007/s10955-012-0548-0
    • NLM

      Krikun M, Iambartsev A. Phase transition for the Ising model on the critical Lorentzian triangulation [Internet]. Journal of Statistical Physics. 2012 ; 148( 1): 422-439.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0548-0
    • Vancouver

      Krikun M, Iambartsev A. Phase transition for the Ising model on the critical Lorentzian triangulation [Internet]. Journal of Statistical Physics. 2012 ; 148( 1): 422-439.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0548-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025