Filtros : "Journal of Statistical Physics" "PROCESSOS DE MARKOV" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS DE MARKOV, PROCESSOS ESTOCÁSTICOS, ANÁLISE DE SOBREVIVÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e ROLDÁN CORREA, Alejandro e VARGAS JÚNIOR, Valdivino. Colonization and collapse on homogeneous trees. Journal of Statistical Physics, v. 173, n. 5, p. 1386–1407, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10955-018-2161-3. Acesso em: 15 nov. 2025.
    • APA

      Machado, F. P., Roldán Correa, A., & Vargas Júnior, V. (2018). Colonization and collapse on homogeneous trees. Journal of Statistical Physics, 173( 5), 1386–1407. doi:10.1007/s10955-018-2161-3
    • NLM

      Machado FP, Roldán Correa A, Vargas Júnior V. Colonization and collapse on homogeneous trees [Internet]. Journal of Statistical Physics. 2018 ; 173( 5): 1386–1407.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-018-2161-3
    • Vancouver

      Machado FP, Roldán Correa A, Vargas Júnior V. Colonization and collapse on homogeneous trees [Internet]. Journal of Statistical Physics. 2018 ; 173( 5): 1386–1407.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-018-2161-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna et al. Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, v. 158, n. 4, p. 866-902, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-014-1145-1. Acesso em: 15 nov. 2025.
    • APA

      De Masi, A., Galves, A., Löcherbach, E., & Presutti, E. (2015). Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, 158( 4), 866-902. doi:10.1007/s10955-014-1145-1
    • NLM

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1145-1
    • Vancouver

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1145-1
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, TEOREMAS LIMITES, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Aline e OST, Guilherme e RODRÍGUEZ, Andrés A. Hydrodynamic limit for spatially structured interacting neurons. Journal of Statistical Physics, v. 161, p. 1163-1202, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-015-1366-y. Acesso em: 15 nov. 2025.
    • APA

      Duarte, A., Ost, G., & Rodríguez, A. A. (2015). Hydrodynamic limit for spatially structured interacting neurons. Journal of Statistical Physics, 161, 1163-1202. doi:10.1007/s10955-015-1366-y
    • NLM

      Duarte A, Ost G, Rodríguez AA. Hydrodynamic limit for spatially structured interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 161 1163-1202.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-015-1366-y
    • Vancouver

      Duarte A, Ost G, Rodríguez AA. Hydrodynamic limit for spatially structured interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 161 1163-1202.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-015-1366-y
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASSANDRO, Marzio e GALVES, Antonio e LÖCHERBACH, Eva. Partially observed Markov random fields are variable neighborhood random fields. Journal of Statistical Physics, v. 147, n. 4, p. 795-807, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0488-8. Acesso em: 15 nov. 2025.
    • APA

      Cassandro, M., Galves, A., & Löcherbach, E. (2012). Partially observed Markov random fields are variable neighborhood random fields. Journal of Statistical Physics, 147( 4), 795-807. doi:10.1007/s10955-012-0488-8
    • NLM

      Cassandro M, Galves A, Löcherbach E. Partially observed Markov random fields are variable neighborhood random fields [Internet]. Journal of Statistical Physics. 2012 ; 147( 4): 795-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0488-8
    • Vancouver

      Cassandro M, Galves A, Löcherbach E. Partially observed Markov random fields are variable neighborhood random fields [Internet]. Journal of Statistical Physics. 2012 ; 147( 4): 795-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-012-0488-8
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e GARCIA, Nancy Lopes e PRIEUR, Clémentine. Perfect simulation of a coupling achieving the ¯ d-distance between ordered pairs of binary chains of infinite order. Journal of Statistical Physics, v. 141, n. 4, p. 669-682, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10955-010-0071-0. Acesso em: 15 nov. 2025.
    • APA

      Galves, A., Garcia, N. L., & Prieur, C. (2010). Perfect simulation of a coupling achieving the ¯ d-distance between ordered pairs of binary chains of infinite order. Journal of Statistical Physics, 141( 4), 669-682. doi:10.1007/s10955-010-0071-0
    • NLM

      Galves A, Garcia NL, Prieur C. Perfect simulation of a coupling achieving the ¯ d-distance between ordered pairs of binary chains of infinite order [Internet]. Journal of Statistical Physics. 2010 ; 141( 4): 669-682.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-010-0071-0
    • Vancouver

      Galves A, Garcia NL, Prieur C. Perfect simulation of a coupling achieving the ¯ d-distance between ordered pairs of binary chains of infinite order [Internet]. Journal of Statistical Physics. 2010 ; 141( 4): 669-682.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-010-0071-0
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates. Branching exclusion process on a strip. Journal of Statistical Physics, v. 86, n. 33/4, p. 765-777, 1997Tradução . . Disponível em: https://doi.org/10.1007/bf02199119. Acesso em: 15 nov. 2025.
    • APA

      Machado, F. P. (1997). Branching exclusion process on a strip. Journal of Statistical Physics, 86( 33/4), 765-777. doi:10.1007/bf02199119
    • NLM

      Machado FP. Branching exclusion process on a strip [Internet]. Journal of Statistical Physics. 1997 ; 86( 33/4): 765-777.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf02199119
    • Vancouver

      Machado FP. Branching exclusion process on a strip [Internet]. Journal of Statistical Physics. 1997 ; 86( 33/4): 765-777.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/bf02199119
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS DE MARKOV, MECÂNICA ESTATÍSTICA, PASSEIOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, A et al. Invariance principle for reversible Markov processes: applications to randon motions in random environments. Journal of Statistical Physics, v. 55, n. 3-4, p. 787-856, 1989Tradução . . Disponível em: https://doi.org/10.1007/BF01041608. Acesso em: 15 nov. 2025.
    • APA

      De Masi, A., Ferrari, P. A., Goldstein, S., & Wick, W. D. (1989). Invariance principle for reversible Markov processes: applications to randon motions in random environments. Journal of Statistical Physics, 55( 3-4), 787-856. doi:10.1007/BF01041608
    • NLM

      De Masi A, Ferrari PA, Goldstein S, Wick WD. Invariance principle for reversible Markov processes: applications to randon motions in random environments [Internet]. Journal of Statistical Physics. 1989 ;55( 3-4): 787-856.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/BF01041608
    • Vancouver

      De Masi A, Ferrari PA, Goldstein S, Wick WD. Invariance principle for reversible Markov processes: applications to randon motions in random environments [Internet]. Journal of Statistical Physics. 1989 ;55( 3-4): 787-856.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/BF01041608

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025