Filtros : "Algebras and Representation Theory" "Brasil" Limpar

Filtros



Refine with date range


  • Source: Algebras and Representation Theory. Unidade: IME

    Subjects: FUNÇÕES ALGÉBRICAS, TEORIA DA REPRESENTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARES, Edson Ribeiro e MARCOS, Eduardo do Nascimento e MELTZER, Hagen. On the braid group action on exceptional sequences for weighted projective lines. Algebras and Representation Theory, v. 27, n. 1, p. 897-909, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10468-023-10243-9. Acesso em: 17 nov. 2025.
    • APA

      Alvares, E. R., Marcos, E. do N., & Meltzer, H. (2024). On the braid group action on exceptional sequences for weighted projective lines. Algebras and Representation Theory, 27( 1), 897-909. doi:10.1007/s10468-023-10243-9
    • NLM

      Alvares ER, Marcos E do N, Meltzer H. On the braid group action on exceptional sequences for weighted projective lines [Internet]. Algebras and Representation Theory. 2024 ; 27( 1): 897-909.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-023-10243-9
    • Vancouver

      Alvares ER, Marcos E do N, Meltzer H. On the braid group action on exceptional sequences for weighted projective lines [Internet]. Algebras and Representation Theory. 2024 ; 27( 1): 897-909.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-023-10243-9
  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, v. 26, n. 6, p. 2383-2397, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10468-022-10178-7. Acesso em: 17 nov. 2025.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2023). On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, 26( 6), 2383-2397. doi:10.1007/s10468-022-10178-7
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ÁLGEBRA DIFERENCIAL, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARO-TUESTA, Napoleón e LEVCOVITZ, Daniel. Module structure of certain rings of differential operators. Algebras and Representation Theory, v. 23, n. 4, p. 1637-1657, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10468-019-09905-4. Acesso em: 17 nov. 2025.
    • APA

      Caro-Tuesta, N., & Levcovitz, D. (2020). Module structure of certain rings of differential operators. Algebras and Representation Theory, 23( 4), 1637-1657. doi:10.1007/s10468-019-09905-4
    • NLM

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-019-09905-4
    • Vancouver

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-019-09905-4
  • Source: Algebras and Representation Theory. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IUSENKO, Kostiantyn e MACQUARRIE, John William. The path algebra as a left adjoint functor. Algebras and Representation Theory, v. 23, p. 33-52, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10468-018-9836-y. Acesso em: 17 nov. 2025.
    • APA

      Iusenko, K., & MacQuarrie, J. W. (2020). The path algebra as a left adjoint functor. Algebras and Representation Theory, 23, 33-52. doi:10.1007/s10468-018-9836-y
    • NLM

      Iusenko K, MacQuarrie JW. The path algebra as a left adjoint functor [Internet]. Algebras and Representation Theory. 2020 ; 23 33-52.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-018-9836-y
    • Vancouver

      Iusenko K, MacQuarrie JW. The path algebra as a left adjoint functor [Internet]. Algebras and Representation Theory. 2020 ; 23 33-52.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-018-9836-y
  • Source: Algebras and Representation Theory. Unidade: IME

    Assunto: HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COELHO, Flávio Ulhoa e WAGNER, Heily. On linearly oriented pullback and classes of algebras. Algebras and Representation Theory, v. 23, p. 739-758, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10468-019-09870-y. Acesso em: 17 nov. 2025.
    • APA

      Coelho, F. U., & Wagner, H. (2020). On linearly oriented pullback and classes of algebras. Algebras and Representation Theory, 23, 739-758. doi:10.1007/s10468-019-09870-y
    • NLM

      Coelho FU, Wagner H. On linearly oriented pullback and classes of algebras [Internet]. Algebras and Representation Theory. 2020 ; 23 739-758.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-019-09870-y
    • Vancouver

      Coelho FU, Wagner H. On linearly oriented pullback and classes of algebras [Internet]. Algebras and Representation Theory. 2020 ; 23 739-758.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-019-09870-y
  • Source: Algebras and Representation Theory. Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARES, Edson Ribeiro e COELHO, Flávio Ulhoa. Embeddings of Non-semiregular Translation Quivers in Quivers of Type ZΔ. Algebras and Representation Theory, v. 10, n. 2, p. 97-116, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10468-006-9041-2. Acesso em: 17 nov. 2025.
    • APA

      Alvares, E. R., & Coelho, F. U. (2007). Embeddings of Non-semiregular Translation Quivers in Quivers of Type ZΔ. Algebras and Representation Theory, 10( 2), 97-116. doi:10.1007/s10468-006-9041-2
    • NLM

      Alvares ER, Coelho FU. Embeddings of Non-semiregular Translation Quivers in Quivers of Type ZΔ [Internet]. Algebras and Representation Theory. 2007 ; 10( 2): 97-116.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-006-9041-2
    • Vancouver

      Alvares ER, Coelho FU. Embeddings of Non-semiregular Translation Quivers in Quivers of Type ZΔ [Internet]. Algebras and Representation Theory. 2007 ; 10( 2): 97-116.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s10468-006-9041-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025