Exportar registro bibliográfico


Metrics:

Module structure of certain rings of differential operators (2020)

  • Authors:
  • Autor USP: LEVCOVITZ, DANIEL - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s10468-019-09905-4
  • Subjects: ÁLGEBRA DIFERENCIAL; ANÉIS E ÁLGEBRAS COMUTATIVOS
  • Keywords: Stafford theorem; Two generated property; Very simple domain
  • Language: Inglês
  • Imprenta:
  • Source:
  • PrivadoAcesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10468-019-09905-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    Download do texto completo

    Tipo Nome Link
    Privado2948375.pdf
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CARO-TUESTA, Napoleón; LEVCOVITZ, Daniel. Module structure of certain rings of differential operators. Algebras and Representation Theory, Dordrecht, Springer, v. 23, n. 4, p. 1637-1657, 2020. Disponível em: < https://doi.org/10.1007/s10468-019-09905-4 > DOI: 10.1007/s10468-019-09905-4.
    • APA

      Caro-Tuesta, N., & Levcovitz, D. (2020). Module structure of certain rings of differential operators. Algebras and Representation Theory, 23( 4), 1637-1657. doi:10.1007/s10468-019-09905-4
    • NLM

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.Available from: https://doi.org/10.1007/s10468-019-09905-4
    • Vancouver

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.Available from: https://doi.org/10.1007/s10468-019-09905-4

    Referências citadas na obra
    Bavula, V.V.: Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75-97
    English transl. in St Petersburg Math. J. 4, pp. 71-92 (1993)
    Bavula, V.V.: Module structure of the tensor product of simple algebras of Krull dimension 1, Representation theory of groups, algebras and orders (Constanta, 1995). An. Stiint. Univ. Ovidius constanta Ser. Mat. 4(2), 7–21 (1996)
    Byun, L.H.: A note on the module structure of Weyl algebras and simple Noetherian rings. Comm. Algebra 21, 991–998 (1993)
    Coutinho, S.C., Holland, M.P.: Module structure of rings of differential operators. Proc. Lond. Math. Soc. 57, 417–432 (1988)
    Goodearl, K.R., Warfield , R.B.: An introduction to noncommutative Noetherian rings, 2nd edn. Cambridge University Press, Cambridge (2004)
    Hillebrand, A., Schmale, W.: Towards an effective version of a theorem of Stafford. Effective methods in rings of differential operators. J. Symb. Comput. 32, 699–716 (2001)
    Leykin, A.: Algorithmic proofs of two theorems of Stafford. J. Symb. Comput. 38, 1535–1550 (2004)
    Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential differential operators. Acta Appl. Math. 133, 187–234 (2014)
    Sabbah, C.: Introduction to algebraic theory of linear systems of differential equations. Cours à lécole du CIMPA (Nice 1990) publié dans: Eléments de la théorie de systèmes différentiels. D-modules cohérents et holonomes. Travaux en Cours, vol. 45, Hermann, Paris (1993)
    Stafford, J.T.: Module structure of Weyl algebras. J. Lond. Math. Soc. (2) 18 (3), 429–442 (1978)
    Swan, R.G.: Algebraic K-theory, Lecture notes in mathematics, vol. 76. Springer, Berlin (1968)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021