Filtros : "Shestakov, Ivan P" "2021" Removido: "Financiado pela Russian Foundation for Basic Research" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey Valentinovich e SHASHKOV, Oleg Vladimirovich e SHESTAKOV, Ivan P. Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, v. 572, p. 111-128, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.12.009. Acesso em: 27 nov. 2025.
    • APA

      Pchelintsev, S. V., Shashkov, O. V., & Shestakov, I. P. (2021). Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, 572, 111-128. doi:10.1016/j.jalgebra.2020.12.009
    • NLM

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
    • Vancouver

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
  • Source: Algebra Logika. Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P. e SHESTAKOV, Ivan P. Simple right-symmetric (1,1)-superalgebras. Algebra Logika, v. 60, n. 2, p. 166-175, 2021Tradução . . Disponível em: https://doi.org/10.33048/alglog.2021.60.204. Acesso em: 27 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). Simple right-symmetric (1,1)-superalgebras. Algebra Logika, 60( 2), 166-175. doi:10.33048/alglog.2021.60.204
    • NLM

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1,1)-superalgebras [Internet]. Algebra Logika. 2021 ; 60( 2): 166-175.[citado 2025 nov. 27 ] Available from: https://doi.org/10.33048/alglog.2021.60.204
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1,1)-superalgebras [Internet]. Algebra Logika. 2021 ; 60( 2): 166-175.[citado 2025 nov. 27 ] Available from: https://doi.org/10.33048/alglog.2021.60.204
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZHANG, Zerui. Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, v. 225, n. 8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2020.106636. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Zhang, Z. (2021). Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, 225( 8). doi:10.1016/j.jpaa.2020.106636
    • NLM

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2020.106636
    • Vancouver

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2020.106636
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G. e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, v. 621, p. 235-253, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2021.03.023. Acesso em: 27 nov. 2025.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, 621, 235-253. doi:10.1016/j.laa.2021.03.023
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.laa.2021.03.023
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.laa.2021.03.023
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando e SHESTAKOV, Ivan P. LD-stability for Goldie rings. Journal of Pure and Applied Algebra, v. 225, n. 11, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2021.106741. Acesso em: 27 nov. 2025.
    • APA

      Futorny, V., Schwarz, J. F., & Shestakov, I. P. (2021). LD-stability for Goldie rings. Journal of Pure and Applied Algebra, 225( 11), 1-14. doi:10.1016/j.jpaa.2021.106741
    • NLM

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
    • Vancouver

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
  • Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE JORDAN, ÁLGEBRAS LIVRES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale. Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa. 2021. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/. Acesso em: 27 nov. 2025.
    • APA

      Crode, S. D. (2021). Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/
    • NLM

      Crode SD. Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa [Internet]. 2021 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/
    • Vancouver

      Crode SD. Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa [Internet]. 2021 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, v. 574, p. 453-513, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.02.001. Acesso em: 27 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2021). Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, 574, 453-513. doi:10.1016/j.jalgebra.2021.02.001
    • NLM

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
    • Vancouver

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikhail. Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, v. 245, p. 615–638, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11856-021-2221-2. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, 245, 615–638. doi:10.1007/s11856-021-2221-2
    • NLM

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11856-021-2221-2
    • Vancouver

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11856-021-2221-2
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P e SHESTAKOV, Ivan P. Simple right-symmetric (1, 1)-superalgebras. Algebra and Logic, v. 60, n. 2, p. 108-114, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10469-021-09633-z. Acesso em: 27 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). Simple right-symmetric (1, 1)-superalgebras. Algebra and Logic, 60( 2), 108-114. doi:10.1007/s10469-021-09633-z
    • NLM

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1, 1)-superalgebras [Internet]. Algebra and Logic. 2021 ; 60( 2): 108-114.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-021-09633-z
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1, 1)-superalgebras [Internet]. Algebra and Logic. 2021 ; 60( 2): 108-114.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-021-09633-z
  • Source: Archiv der Mathematik. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikhail. Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, v. 116, n. 4, p. 413-421, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00013-020-01567-9. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, 116( 4), 413-421. doi:10.1007/s00013-020-01567-9
    • NLM

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ; 116( 4): 413-421.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00013-020-01567-9
    • Vancouver

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ; 116( 4): 413-421.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00013-020-01567-9
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 27 nov. 2025.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Siberian Mathematical Journal. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P. e SHESTAKOV, Ivan P. On the right-symmetric algebras with a unital matrix subalgebra. Siberian Mathematical Journal, v. 62, p. 138-147, 2021Tradução . . Disponível em: https://doi.org/10.1134/S0037446621010158. Acesso em: 27 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). On the right-symmetric algebras with a unital matrix subalgebra. Siberian Mathematical Journal, 62, 138-147. doi:10.1134/S0037446621010158
    • NLM

      Pozhidaev AP, Shestakov IP. On the right-symmetric algebras with a unital matrix subalgebra [Internet]. Siberian Mathematical Journal. 2021 ; 62 138-147.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1134/S0037446621010158
    • Vancouver

      Pozhidaev AP, Shestakov IP. On the right-symmetric algebras with a unital matrix subalgebra [Internet]. Siberian Mathematical Journal. 2021 ; 62 138-147.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1134/S0037446621010158
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e SOKOLOV, Vladimir V. Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, v. 20, n. art. 2150050, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1142/S021949882150050X. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Sokolov, V. V. (2021). Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, 20( art. 2150050), 1-24. doi:10.1142/S021949882150050X
    • NLM

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S021949882150050X
    • Vancouver

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S021949882150050X

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025