Filtros : "Topological Methods in Nonlinear Analysis" "2015" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel e GONÇALVES, Daciberg Lima. The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 773-784, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.066. Acesso em: 18 nov. 2025.
    • APA

      Dekimpe, K., & Gonçalves, D. L. (2015). The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, 46( 2), 773-784. doi:10.12775/TMNA.2015.066
    • NLM

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.066
    • Vancouver

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.066
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: GRAU TOPOLÓGICO, ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e FURI, Massimo. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 401-430, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.052. Acesso em: 18 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., & Furi, M. (2015). On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, 46( 1), 401-430. doi:10.12775/TMNA.2015.052
    • NLM

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.052
    • Vancouver

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.052
  • Source: Topological Methods in Nonlinear Analysis. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e PIERRI, Michelle e O'REGAN, Donal. On abstract differential equations with non instantaneous impulses. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 1067-1088, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.080. Acesso em: 18 nov. 2025.
    • APA

      Hernandez, E., Pierri, M., & O'Regan, D. (2015). On abstract differential equations with non instantaneous impulses. Topological Methods in Nonlinear Analysis, 46( 2), 1067-1088. doi:10.12775/TMNA.2015.080
    • NLM

      Hernandez E, Pierri M, O'Regan D. On abstract differential equations with non instantaneous impulses [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 1067-1088.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.080
    • Vancouver

      Hernandez E, Pierri M, O'Regan D. On abstract differential equations with non instantaneous impulses [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 1067-1088.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.080
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 18 nov. 2025.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.022
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 18 nov. 2025.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, GEOMETRIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor O e NEMER, Rodrigo C. M e SOARES, Sérgio Henrique Monari. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 329-362, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.050. Acesso em: 18 nov. 2025.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2015). Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 46( 1), 329-362. doi:10.12775/tmna.2015.050
    • NLM

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.050
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.050
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira e MOREIRA DOS SANTOS, Ederson. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 551-574, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.026. Acesso em: 18 nov. 2025.
    • APA

      Melo, J. L. F., & Moreira dos Santos, E. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.026
    • Vancouver

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.026

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025