Filtros : "Topological Methods in Nonlinear Analysis" "2013" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS, SISTEMAS DISSIPATIVO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, v. 41, n. 1, p. 1-38, 2013Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1461253854. Acesso em: 18 nov. 2025.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, 41( 1), 1-38. Recuperado de https://projecteuclid.org/euclid.tmna/1461253854
    • NLM

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
    • Vancouver

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 233-256, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 18 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e MONIS, Thaís Fernanda Mendes. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 409-419, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Biasi, C., & Monis, T. F. M. (2013). Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, 41( 2), 409-419.
    • NLM

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.[citado 2025 nov. 18 ]
    • Vancouver

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 229-253, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Arrieta, J. M., Bezerra, F. D. M., & Carvalho, A. N. de. (2013). Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, 41( 2), 229-253.
    • NLM

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 18 ]
    • Vancouver

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 345-376, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Aragão-Costa, É. R., Carvalho, A. N. de, Marín-Rubio, P., & Planas, G. (2013). Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, 42( 2), 345-376.
    • NLM

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 18 ]
    • Vancouver

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 18 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025