Filtros : "Topological Methods in Nonlinear Analysis" "Carvalho, Alexandre Nolasco de" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, v. 65, n. 2, p. 623-651, 2025Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2024.051. Acesso em: 18 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, 65( 2), 623-651. doi:10.12775/TMNA.2024.051
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2024.051
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2024.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 1-23, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.048. Acesso em: 18 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2018.048
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 18 nov. 2025.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.022
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 18 nov. 2025.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 229-253, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Arrieta, J. M., Bezerra, F. D. M., & Carvalho, A. N. de. (2013). Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, 41( 2), 229-253.
    • NLM

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 18 ]
    • Vancouver

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 345-376, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Aragão-Costa, É. R., Carvalho, A. N. de, Marín-Rubio, P., & Planas, G. (2013). Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, 42( 2), 345-376.
    • NLM

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 18 ]
    • Vancouver

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, v. 39, n. 1, p. 57-82, 2012Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Aragão-Costa, É. R., Caraballo, T., Carvalho, A. N. de, & Langa, J. A. (2012). Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, 39( 1), 57-82.
    • NLM

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.[citado 2025 nov. 18 ]
    • Vancouver

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.[citado 2025 nov. 18 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025