Filtros : "Topological Methods in Nonlinear Analysis" "Espanha" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, v. 65, n. 2, p. 623-651, 2025Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2024.051. Acesso em: 18 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, 65( 2), 623-651. doi:10.12775/TMNA.2024.051
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2024.051
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2024.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 18 nov. 2025.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 18 nov. 2025.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.022

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025