Filtros : "Topological Methods in Nonlinear Analysis" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES INTEGRO-DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, ESTABILIDADE DE LIAPUNOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, v. 51, n. 2, p. 583-598, 2018Tradução . . Disponível em: https://doi.org/10.12775/tmna.2018.004. Acesso em: 18 nov. 2025.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2018). A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, 51( 2), 583-598. doi:10.12775/tmna.2018.004
    • NLM

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2018.004
    • Vancouver

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2018.004
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, GEOMETRIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor O e NEMER, Rodrigo C. M e SOARES, Sérgio Henrique Monari. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 329-362, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.050. Acesso em: 18 nov. 2025.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2015). Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 46( 1), 329-362. doi:10.12775/tmna.2015.050
    • NLM

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.050
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.050
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira e MOREIRA DOS SANTOS, Ederson. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 551-574, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.026. Acesso em: 18 nov. 2025.
    • APA

      Melo, J. L. F., & Moreira dos Santos, E. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.026
    • Vancouver

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2015.026
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 233-256, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 18 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 229-253, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Arrieta, J. M., Bezerra, F. D. M., & Carvalho, A. N. de. (2013). Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, 41( 2), 229-253.
    • NLM

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 18 ]
    • Vancouver

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 345-376, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Aragão-Costa, É. R., Carvalho, A. N. de, Marín-Rubio, P., & Planas, G. (2013). Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, 42( 2), 345-376.
    • NLM

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 18 ]
    • Vancouver

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, v. 39, n. 1, p. 57-82, 2012Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Aragão-Costa, É. R., Caraballo, T., Carvalho, A. N. de, & Langa, J. A. (2012). Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, 39( 1), 57-82.
    • NLM

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.[citado 2025 nov. 18 ]
    • Vancouver

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, v. 40, n. 1, p. 1-28, 2012Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2012). On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, 40( 1), 1-28.
    • NLM

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.[citado 2025 nov. 18 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis, v. 37, n. 1, p. 1-35, 2011Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2011). Localized singularities and Conley index. Topological Methods in Nonlinear Analysis, 37( 1), 1-35.
    • NLM

      Carbinatto M do C, Rybakowski KP. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis. 2011 ; 37( 1): 1-35.[citado 2025 nov. 18 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis. 2011 ; 37( 1): 1-35.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis, v. 35, n. 1, p. 1-32, 2010Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2010). Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis, 35( 1), 1-32.
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis. 2010 ; 35( 1): 1-32.[citado 2025 nov. 18 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis. 2010 ; 35( 1): 1-32.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis, v. 28, n. 2, p. 199-233, 2006Tradução . . Disponível em: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html. Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2006). The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis, 28( 2), 199-233. Recuperado de http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
    • NLM

      Carbinatto M do C, Rybakowski KP. The suspension isomorphism for homology index braids [Internet]. Topological Methods in Nonlinear Analysis. 2006 ; 28( 2): 199-233.[citado 2025 nov. 18 ] Available from: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
    • Vancouver

      Carbinatto M do C, Rybakowski KP. The suspension isomorphism for homology index braids [Internet]. Topological Methods in Nonlinear Analysis. 2006 ; 28( 2): 199-233.[citado 2025 nov. 18 ] Available from: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Homology index braids in infinite-dimensional conley index theory. Topological Methods in Nonlinear Analysis, v. 26, n. 1, p. 35-74, 2005Tradução . . Disponível em: https://doi.org/10.12775/tmna.2005.024. Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2005). Homology index braids in infinite-dimensional conley index theory. Topological Methods in Nonlinear Analysis, 26( 1), 35-74. doi:10.12775/tmna.2005.024
    • NLM

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. Topological Methods in Nonlinear Analysis. 2005 ; 26( 1): 35-74.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2005.024
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. Topological Methods in Nonlinear Analysis. 2005 ; 26( 1): 35-74.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2005.024
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation and thin domain problems. Topological Methods in Nonlinear Analysis, v. 16, n. 2, p. 201-251, 2000Tradução . . Disponível em: https://doi.org/10.12775/tmna.2000.039. Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2000). Conley index continuation and thin domain problems. Topological Methods in Nonlinear Analysis, 16( 2), 201-251. doi:10.12775/tmna.2000.039
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation and thin domain problems [Internet]. Topological Methods in Nonlinear Analysis. 2000 ; 16( 2): 201-251.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2000.039
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation and thin domain problems [Internet]. Topological Methods in Nonlinear Analysis. 2000 ; 16( 2): 201-251.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2000.039

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025