Filtros : "Topological Methods in Nonlinear Analysis" "Indexado no Mathematical Reviews" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e PIERRI, Michelle e O'REGAN, Donal. On abstract differential equations with non instantaneous impulses. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 1067-1088, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.080. Acesso em: 18 nov. 2025.
    • APA

      Hernandez, E., Pierri, M., & O'Regan, D. (2015). On abstract differential equations with non instantaneous impulses. Topological Methods in Nonlinear Analysis, 46( 2), 1067-1088. doi:10.12775/TMNA.2015.080
    • NLM

      Hernandez E, Pierri M, O'Regan D. On abstract differential equations with non instantaneous impulses [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 1067-1088.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.080
    • Vancouver

      Hernandez E, Pierri M, O'Regan D. On abstract differential equations with non instantaneous impulses [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 1067-1088.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.080
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 233-256, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 18 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 18 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e MONIS, Thaís Fernanda Mendes. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 409-419, 2013Tradução . . Acesso em: 18 nov. 2025.
    • APA

      Biasi, C., & Monis, T. F. M. (2013). Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, 41( 2), 409-419.
    • NLM

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.[citado 2025 nov. 18 ]
    • Vancouver

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.[citado 2025 nov. 18 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025