Filtros : "Nonlinear Analysis: Theory Methods and Applications" "Financiado pelo CNPq" Removido: "Rossi, Julio D." Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÃO DE SCHRODINGER, MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEHRER, Raquel e SOARES, Sérgio Henrique Monari. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Analysis, v. 197, p. 1-29, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111841. Acesso em: 05 dez. 2025.
    • APA

      Lehrer, R., & Soares, S. H. M. (2020). Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Analysis, 197, 1-29. doi:10.1016/j.na.2020.111841
    • NLM

      Lehrer R, Soares SHM. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations [Internet]. Nonlinear Analysis. 2020 ; 197 1-29.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2020.111841
    • Vancouver

      Lehrer R, Soares SHM. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations [Internet]. Nonlinear Analysis. 2020 ; 197 1-29.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2020.111841
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Andréia da Silva e PEREIRA, Antonio Luiz. Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, v. 37, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2016.12.008. Acesso em: 05 dez. 2025.
    • APA

      Coutinho, A. da S., & Pereira, A. L. (2017). Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, 37, 1-13. doi:10.1016/j.nonrwa.2016.12.008
    • NLM

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008
    • Vancouver

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025