Filtros : "Multimedia Tools and Applications" "RECONHECIMENTO DE IMAGEM" Limpar

Filtros



Refine with date range


  • Source: Multimedia Tools and Applications. Unidade: ICMC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE IMAGEM, DIAGNÓSTICO POR COMPUTADOR, NEOPLASIAS CUTÂNEAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPOLAÔR, Newton et al. Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets. Multimedia Tools and Applications, v. 83, n. 9, p. 27305-27329, 2024Tradução . . Disponível em: https://doi.org/10.1007/s11042-023-16529-w. Acesso em: 11 nov. 2025.
    • APA

      Spolaôr, N., Lee, H. D., Mendes, A. I., Nogueira, C. V., Parmezan, A. R. S., Takaki, W. S. R., et al. (2024). Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets. Multimedia Tools and Applications, 83( 9), 27305-27329. doi:10.1007/s11042-023-16529-w
    • NLM

      Spolaôr N, Lee HD, Mendes AI, Nogueira CV, Parmezan ARS, Takaki WSR, Coy CSR, Wu FC, Fonseca-Pinto R. Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets [Internet]. Multimedia Tools and Applications. 2024 ; 83( 9): 27305-27329.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-023-16529-w
    • Vancouver

      Spolaôr N, Lee HD, Mendes AI, Nogueira CV, Parmezan ARS, Takaki WSR, Coy CSR, Wu FC, Fonseca-Pinto R. Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets [Internet]. Multimedia Tools and Applications. 2024 ; 83( 9): 27305-27329.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-023-16529-w
  • Source: Multimedia Tools and Applications. Unidade: ICMC

    Subjects: RECUPERAÇÃO DA INFORMAÇÃO, RECONHECIMENTO DE IMAGEM, REDES NEURAIS, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Leo Sampaio Ferraz et al. Scene designer: compositional sketch-based image retrieval with contrastive learning and an auxiliary synthesis task. Multimedia Tools and Applications, v. 82, n. 24, p. 38117-38139, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11042-022-14282-0. Acesso em: 11 nov. 2025.
    • APA

      Ribeiro, L. S. F., Bui, T., Collomosse, J., & Ponti, M. A. (2023). Scene designer: compositional sketch-based image retrieval with contrastive learning and an auxiliary synthesis task. Multimedia Tools and Applications, 82( 24), 38117-38139. doi:10.1007/s11042-022-14282-0
    • NLM

      Ribeiro LSF, Bui T, Collomosse J, Ponti MA. Scene designer: compositional sketch-based image retrieval with contrastive learning and an auxiliary synthesis task [Internet]. Multimedia Tools and Applications. 2023 ; 82( 24): 38117-38139.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-022-14282-0
    • Vancouver

      Ribeiro LSF, Bui T, Collomosse J, Ponti MA. Scene designer: compositional sketch-based image retrieval with contrastive learning and an auxiliary synthesis task [Internet]. Multimedia Tools and Applications. 2023 ; 82( 24): 38117-38139.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-022-14282-0
  • Source: Multimedia Tools and Applications. Unidade: ICMC

    Subjects: MULTIMÍDIA, RECONHECIMENTO DE IMAGEM, VÍDEO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BESERRA, Antonio Alessandro Rocha e GOULARTE, Rudinei. Multimodal early fusion operators for temporal video scene segmentation tasks. Multimedia Tools and Applications, v. 82, n. 20, p. 31539-31556, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11042-023-14953-6. Acesso em: 11 nov. 2025.
    • APA

      Beserra, A. A. R., & Goularte, R. (2023). Multimodal early fusion operators for temporal video scene segmentation tasks. Multimedia Tools and Applications, 82( 20), 31539-31556. doi:10.1007/s11042-023-14953-6
    • NLM

      Beserra AAR, Goularte R. Multimodal early fusion operators for temporal video scene segmentation tasks [Internet]. Multimedia Tools and Applications. 2023 ; 82( 20): 31539-31556.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-023-14953-6
    • Vancouver

      Beserra AAR, Goularte R. Multimodal early fusion operators for temporal video scene segmentation tasks [Internet]. Multimedia Tools and Applications. 2023 ; 82( 20): 31539-31556.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-023-14953-6
  • Source: Multimedia Tools and Applications. Unidade: ICMC

    Subjects: RECONHECIMENTO DE IMAGEM, VÍDEO, MULTIMÍDIA INTERATIVA, REDES NEURAIS, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TROJAHN, Tiago Henrique e GOULARTE, Rudinei. Temporal video scene segmentation using deep-learning. Multimedia Tools and Applications, v. 80, n. 12, p. 17487-17513, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11042-020-10450-2. Acesso em: 11 nov. 2025.
    • APA

      Trojahn, T. H., & Goularte, R. (2021). Temporal video scene segmentation using deep-learning. Multimedia Tools and Applications, 80( 12), 17487-17513. doi:10.1007/s11042-020-10450-2
    • NLM

      Trojahn TH, Goularte R. Temporal video scene segmentation using deep-learning [Internet]. Multimedia Tools and Applications. 2021 ; 80( 12): 17487-17513.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-020-10450-2
    • Vancouver

      Trojahn TH, Goularte R. Temporal video scene segmentation using deep-learning [Internet]. Multimedia Tools and Applications. 2021 ; 80( 12): 17487-17513.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-020-10450-2
  • Source: Multimedia Tools and Applications. Unidades: ICMC, EESC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE IMAGEM, OLHO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRAZ, Carolina Toledo et al. A comparison among keyframe extraction techniques for CNN classification based on video periocular images. Multimedia Tools and Applications, v. 80, n. 8, p. 12843-12856, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11042-020-10384-9. Acesso em: 11 nov. 2025.
    • APA

      Ferraz, C. T., Barcellos, W., Pereira Junior, O., Borges, T. T. N., Manzato, M. G., Gonzaga, A., & Saito, J. H. (2021). A comparison among keyframe extraction techniques for CNN classification based on video periocular images. Multimedia Tools and Applications, 80( 8), 12843-12856. doi:10.1007/s11042-020-10384-9
    • NLM

      Ferraz CT, Barcellos W, Pereira Junior O, Borges TTN, Manzato MG, Gonzaga A, Saito JH. A comparison among keyframe extraction techniques for CNN classification based on video periocular images [Internet]. Multimedia Tools and Applications. 2021 ; 80( 8): 12843-12856.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-020-10384-9
    • Vancouver

      Ferraz CT, Barcellos W, Pereira Junior O, Borges TTN, Manzato MG, Gonzaga A, Saito JH. A comparison among keyframe extraction techniques for CNN classification based on video periocular images [Internet]. Multimedia Tools and Applications. 2021 ; 80( 8): 12843-12856.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-020-10384-9
  • Source: Multimedia Tools and Applications. Unidade: EESC

    Subjects: RECONHECIMENTO DE IMAGEM, ENGENHARIA ELÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Raissa Tavares e NEGRI, Tamiris Trevisan e GONZAGA, Adilson. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor. Multimedia Tools and Applications, 2018Tradução . . Disponível em: https://doi.org/10.1007/s11042-018-6204-1. Acesso em: 11 nov. 2025.
    • APA

      Vieira, R. T., Negri, T. T., & Gonzaga, A. (2018). Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor. Multimedia Tools and Applications. doi:10.1007/s11042-018-6204-1
    • NLM

      Vieira RT, Negri TT, Gonzaga A. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor [Internet]. Multimedia Tools and Applications. 2018 ;[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-018-6204-1
    • Vancouver

      Vieira RT, Negri TT, Gonzaga A. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor [Internet]. Multimedia Tools and Applications. 2018 ;[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-018-6204-1
  • Source: Multimedia Tools and Applications. Unidade: ICMC

    Subjects: BANCO DE DADOS, PROCESSAMENTO DE IMAGENS, RECONHECIMENTO DE IMAGEM, COMPUTAÇÃO GRÁFICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEDROSA, Glauco V e TRAINA, Agma Juci Machado e BARCELOS, Celia A. Z. Retrieving 2D shapes by similarity based on bag of salience points. Multimedia Tools and Applications, v. 76, n. 20, p. 20957-20971, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11042-016-4046-2. Acesso em: 11 nov. 2025.
    • APA

      Pedrosa, G. V., Traina, A. J. M., & Barcelos, C. A. Z. (2017). Retrieving 2D shapes by similarity based on bag of salience points. Multimedia Tools and Applications, 76( 20), 20957-20971. doi:10.1007/s11042-016-4046-2
    • NLM

      Pedrosa GV, Traina AJM, Barcelos CAZ. Retrieving 2D shapes by similarity based on bag of salience points [Internet]. Multimedia Tools and Applications. 2017 ; 76( 20): 20957-20971.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-016-4046-2
    • Vancouver

      Pedrosa GV, Traina AJM, Barcelos CAZ. Retrieving 2D shapes by similarity based on bag of salience points [Internet]. Multimedia Tools and Applications. 2017 ; 76( 20): 20957-20971.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11042-016-4046-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025