Filtros : "Mathematical Problems in Engineering" "Indexado no Scopus" Limpar

Filtros



Refine with date range


  • Source: Mathematical Problems in Engineering. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, CASCAS (ENGENHARIA)

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CODA, Humberto Breves e PACCOLA, Rodrigo Ribeiro. Unconstrained finite element for geometrical nonlinear dynamics of shells. Mathematical Problems in Engineering, v. 2009, p. 1-32, 2009Tradução . . Disponível em: http://downloads.hindawi.com/journals/mpe/2009/575131.pdf. Acesso em: 11 nov. 2025.
    • APA

      Coda, H. B., & Paccola, R. R. (2009). Unconstrained finite element for geometrical nonlinear dynamics of shells. Mathematical Problems in Engineering, 2009, 1-32. Recuperado de http://downloads.hindawi.com/journals/mpe/2009/575131.pdf
    • NLM

      Coda HB, Paccola RR. Unconstrained finite element for geometrical nonlinear dynamics of shells [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-32.[citado 2025 nov. 11 ] Available from: http://downloads.hindawi.com/journals/mpe/2009/575131.pdf
    • Vancouver

      Coda HB, Paccola RR. Unconstrained finite element for geometrical nonlinear dynamics of shells [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-32.[citado 2025 nov. 11 ] Available from: http://downloads.hindawi.com/journals/mpe/2009/575131.pdf
  • Source: Mathematical Problems in Engineering. Unidade: EESC

    Subjects: CAOS (SISTEMAS DINÂMICOS), ESTABILIDADE DE LIAPUNOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOZA, Ruy. Diffusive synchronization of hyperchaotic Lorenz systems. Mathematical Problems in Engineering, v. 2009, p. 1-14, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/174546. Acesso em: 11 nov. 2025.
    • APA

      Barboza, R. (2009). Diffusive synchronization of hyperchaotic Lorenz systems. Mathematical Problems in Engineering, 2009, 1-14. doi:10.1155/2009/174546
    • NLM

      Barboza R. Diffusive synchronization of hyperchaotic Lorenz systems [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-14.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/174546
    • Vancouver

      Barboza R. Diffusive synchronization of hyperchaotic Lorenz systems [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-14.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/174546
  • Source: Mathematical Problems in Engineering. Unidade: EESC

    Subjects: SISTEMAS NÃO LINEARES, AEROELASTICIDADE DE AERONAVES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARQUES, Flavio Donizeti e VASCONCELLOS, Rui Marcos Grombone de. Chaotic patterns in aeroelastic signals. Mathematical Problems in Engineering, v. 2009, p. 1-19, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/802970. Acesso em: 11 nov. 2025.
    • APA

      Marques, F. D., & Vasconcellos, R. M. G. de. (2009). Chaotic patterns in aeroelastic signals. Mathematical Problems in Engineering, 2009, 1-19. doi:10.1155/2009/802970
    • NLM

      Marques FD, Vasconcellos RMG de. Chaotic patterns in aeroelastic signals [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/802970
    • Vancouver

      Marques FD, Vasconcellos RMG de. Chaotic patterns in aeroelastic signals [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/802970

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025