Filtros : "Expert Systems with Applications" "Estados Unidos" Limpar

Filtros



Refine with date range


  • Source: Expert Systems with Applications. Unidade: EP

    Assunto: APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FELIZARDO, Leonardo Kanashiro et al. Outperforming algorithmic trading reinforcement learning systems: a supervised approach to the cryptocurrency market. Expert Systems with Applications, v. 202, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2022.117259. Acesso em: 08 nov. 2025.
    • APA

      Felizardo, L. K., Brandimarte, P., Del Moral Hernandez, E., Reali Costa, A. H., Matsumoto, E. Y., Paiva, F. C. L., & Graves, C. de V. (2022). Outperforming algorithmic trading reinforcement learning systems: a supervised approach to the cryptocurrency market. Expert Systems with Applications, 202, 1-13. doi:10.1016/j.eswa.2022.117259
    • NLM

      Felizardo LK, Brandimarte P, Del Moral Hernandez E, Reali Costa AH, Matsumoto EY, Paiva FCL, Graves C de V. Outperforming algorithmic trading reinforcement learning systems: a supervised approach to the cryptocurrency market [Internet]. Expert Systems with Applications. 2022 ; 202 1-13.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2022.117259
    • Vancouver

      Felizardo LK, Brandimarte P, Del Moral Hernandez E, Reali Costa AH, Matsumoto EY, Paiva FCL, Graves C de V. Outperforming algorithmic trading reinforcement learning systems: a supervised approach to the cryptocurrency market [Internet]. Expert Systems with Applications. 2022 ; 202 1-13.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2022.117259
  • Source: Expert Systems with Applications. Unidade: EP

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GLATT, Ruben et al. DECAF: deep case-based policy inference for knowledge transfer in reinforcement learning. Expert Systems with Applications, v. 156, p. 113420, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2020.113420. Acesso em: 08 nov. 2025.
    • APA

      Glatt, R., Silva, F. L. da, Bianchi, R. A. da C., & Reali Costa, A. H. (2020). DECAF: deep case-based policy inference for knowledge transfer in reinforcement learning. Expert Systems with Applications, 156, 113420. doi:10.1016/j.eswa.2020.113420
    • NLM

      Glatt R, Silva FL da, Bianchi RA da C, Reali Costa AH. DECAF: deep case-based policy inference for knowledge transfer in reinforcement learning [Internet]. Expert Systems with Applications. 2020 ; 156 113420.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2020.113420
    • Vancouver

      Glatt R, Silva FL da, Bianchi RA da C, Reali Costa AH. DECAF: deep case-based policy inference for knowledge transfer in reinforcement learning [Internet]. Expert Systems with Applications. 2020 ; 156 113420.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2020.113420
  • Source: Expert Systems with Applications. Unidade: EP

    Assunto: ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERTANI, Ricardo Mitollo e BIANCHI, Reinaldo Augusto da Costa e REALI COSTA, Anna Helena. Combining novelty and popularity on personalised recommendations via user profile learning. Expert Systems with Applications, v. 146, p. 113149, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2019.113149. Acesso em: 08 nov. 2025.
    • APA

      Bertani, R. M., Bianchi, R. A. da C., & Reali Costa, A. H. (2020). Combining novelty and popularity on personalised recommendations via user profile learning. Expert Systems with Applications, 146, 113149. doi:10.1016/j.eswa.2019.113149
    • NLM

      Bertani RM, Bianchi RA da C, Reali Costa AH. Combining novelty and popularity on personalised recommendations via user profile learning [Internet]. Expert Systems with Applications. 2020 ; 146 113149.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2019.113149
    • Vancouver

      Bertani RM, Bianchi RA da C, Reali Costa AH. Combining novelty and popularity on personalised recommendations via user profile learning [Internet]. Expert Systems with Applications. 2020 ; 146 113149.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2019.113149
  • Source: Expert Systems with Applications. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, GESTÃO DA INFORMAÇÃO, PASSEIOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUPERTINO, Thiago Henrique et al. A scheme for high level data classification using random walk and network measures. Expert Systems with Applications, v. 92, p. 289-303, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2017.09.014. Acesso em: 08 nov. 2025.
    • APA

      Cupertino, T. H., Carneiro, M. G., Qiusheng, Z., Junbao, Z., & Liang, Z. (2018). A scheme for high level data classification using random walk and network measures. Expert Systems with Applications, 92, 289-303. doi:10.1016/j.eswa.2017.09.014
    • NLM

      Cupertino TH, Carneiro MG, Qiusheng Z, Junbao Z, Liang Z. A scheme for high level data classification using random walk and network measures [Internet]. Expert Systems with Applications. 2018 ; 92 289-303.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2017.09.014
    • Vancouver

      Cupertino TH, Carneiro MG, Qiusheng Z, Junbao Z, Liang Z. A scheme for high level data classification using random walk and network measures [Internet]. Expert Systems with Applications. 2018 ; 92 289-303.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.eswa.2017.09.014

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025