Filtros : "Ucrânia" "Indexado no Mathematical Reviews" Limpar

Filtros



Refine with date range


  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 12, n. 103, p. 1-15, 2016Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2016.103. Acesso em: 02 nov. 2024.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 12( 103), 1-15. doi:10.3842/SIGMA.2016.103
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor S e MENEGATTO, Valdir Antônio. Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 11, p. 1-13, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.014. Acesso em: 02 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2015). Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 11, 1-13. doi:10.3842/SIGMA.2015.014
    • NLM

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
    • Vancouver

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
  • Source: Symmetry, Integrability and Geometry : Methods and Applications. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch et al. Post-Lie algebras and isospectral flows. Symmetry, Integrability and Geometry : Methods and Applications, v. 11, p. 1-16, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.093. Acesso em: 02 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., & Munthe-Kaas, H. Z. (2015). Post-Lie algebras and isospectral flows. Symmetry, Integrability and Geometry : Methods and Applications, 11, 1-16. doi:10.3842/SIGMA.2015.093
    • NLM

      Ebrahimi-Fard K, Lundervold A, Mencattini I, Munthe-Kaas HZ. Post-Lie algebras and isospectral flows [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2015 ; 11 1-16.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2015.093
    • Vancouver

      Ebrahimi-Fard K, Lundervold A, Mencattini I, Munthe-Kaas HZ. Post-Lie algebras and isospectral flows [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2015 ; 11 1-16.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2015.093
  • Source: Symmetry, Integrability and Geometry : Methods and Applications. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e TACCHELLA, Alberto. A note on the automorphism group of the Bielawski-Pidstrygach quiver. Symmetry, Integrability and Geometry : Methods and Applications, v. 9, p. 1-13, 2013Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2013.037. Acesso em: 02 nov. 2024.
    • APA

      Mencattini, I., & Tacchella, A. (2013). A note on the automorphism group of the Bielawski-Pidstrygach quiver. Symmetry, Integrability and Geometry : Methods and Applications, 9, 1-13. doi:10.3842/SIGMA.2013.037
    • NLM

      Mencattini I, Tacchella A. A note on the automorphism group of the Bielawski-Pidstrygach quiver [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2013 ; 9 1-13.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2013.037
    • Vancouver

      Mencattini I, Tacchella A. A note on the automorphism group of the Bielawski-Pidstrygach quiver [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2013 ; 9 1-13.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3842/SIGMA.2013.037

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024