Filtros : "PROCESSOS ESTOCÁSTICOS" "Brazilian Journal of Probability and Statistics" Limpar

Filtros



Limitar por data


  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERDA-HERNÁNDEZ, Jose Javier e IAMBARTSEV, Anatoli e ZOHREN, S. On the critical probability of percolation on random causal triangulations. Brazilian Journal of Probability and Statistics, v. 31, n. 2, p. 215-228, 2017Tradução . . Disponível em: https://doi.org/10.1214/16-bjps310. Acesso em: 10 nov. 2025.
    • APA

      Cerda-Hernández, J. J., Iambartsev, A., & Zohren, S. (2017). On the critical probability of percolation on random causal triangulations. Brazilian Journal of Probability and Statistics, 31( 2), 215-228. doi:10.1214/16-bjps310
    • NLM

      Cerda-Hernández JJ, Iambartsev A, Zohren S. On the critical probability of percolation on random causal triangulations [Internet]. Brazilian Journal of Probability and Statistics. 2017 ; 31( 2): 215-228.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/16-bjps310
    • Vancouver

      Cerda-Hernández JJ, Iambartsev A, Zohren S. On the critical probability of percolation on random causal triangulations [Internet]. Brazilian Journal of Probability and Statistics. 2017 ; 31( 2): 215-228.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/16-bjps310
  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS, PASSEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna e FERRARI, Pablo Augusto. Separation versus diffusion in a two species system. Brazilian Journal of Probability and Statistics, v. 29, n. 2, p. 387-412, 2015Tradução . . Disponível em: https://doi.org/10.1214/14-BJPS276. Acesso em: 10 nov. 2025.
    • APA

      De Masi, A., & Ferrari, P. A. (2015). Separation versus diffusion in a two species system. Brazilian Journal of Probability and Statistics, 29( 2), 387-412. doi:10.1214/14-BJPS276
    • NLM

      De Masi A, Ferrari PA. Separation versus diffusion in a two species system [Internet]. Brazilian Journal of Probability and Statistics. 2015 ; 29( 2): 387-412.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/14-BJPS276
    • Vancouver

      De Masi A, Ferrari PA. Separation versus diffusion in a two species system [Internet]. Brazilian Journal of Probability and Statistics. 2015 ; 29( 2): 387-412.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/14-BJPS276
  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: PROCESSOS DE MARKOV, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e ROLLA, Leonardo T. Yaglom limit via Holley inequality. Brazilian Journal of Probability and Statistics, v. 29, n. 2, p. 413-426, 2015Tradução . . Disponível em: https://doi.org/10.1214/14-BJPS269. Acesso em: 10 nov. 2025.
    • APA

      Ferrari, P. A., & Rolla, L. T. (2015). Yaglom limit via Holley inequality. Brazilian Journal of Probability and Statistics, 29( 2), 413-426. doi:10.1214/14-BJPS269
    • NLM

      Ferrari PA, Rolla LT. Yaglom limit via Holley inequality [Internet]. Brazilian Journal of Probability and Statistics. 2015 ; 29( 2): 413-426.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/14-BJPS269
    • Vancouver

      Ferrari PA, Rolla LT. Yaglom limit via Holley inequality [Internet]. Brazilian Journal of Probability and Statistics. 2015 ; 29( 2): 413-426.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/14-BJPS269
  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: MECÂNICA QUÂNTICA, MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, Mark e SUHOV, Yu. M e IAMBARTSEV, Anatoli. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, v. 28, n. 4, p. 515-537, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-BJPS222. Acesso em: 10 nov. 2025.
    • APA

      Kelbert, M., Suhov, Y. M., & Iambartsev, A. (2014). A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, 28( 4), 515-537. doi:10.1214/13-BJPS222
    • NLM

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/13-BJPS222
    • Vancouver

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/13-BJPS222

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025