Filtros : "Nonlinearity" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUOIRIN, Humberto Ramos e SICILIANO, Gaetano e SILVA, Kaye. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, v. 37, n. artigo 065010, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad39dd. Acesso em: 13 nov. 2025.
    • APA

      Quoirin, H. R., Siciliano, G., & Silva, K. (2024). Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, 37( artigo 065010), 1-41. doi:10.1088/1361-6544/ad39dd
    • NLM

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
    • Vancouver

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
  • Source: Nonlinearity. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e CAVALCANTE, Márcio. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, v. 34, n. 5, p. 3373-3410, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abea6b. Acesso em: 13 nov. 2025.
    • APA

      Pava, J. A., & Cavalcante, M. (2021). Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, 34( 5), 3373-3410. doi:10.1088/1361-6544/abea6b
    • NLM

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
    • Vancouver

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
  • Source: Nonlinearity. Unidade: IME

    Subjects: MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity, v. 31, n. 3, p. 920-956, 2018Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aa99a2. Acesso em: 13 nov. 2025.
    • APA

      Pava, J. A. (2018). Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity, 31( 3), 920-956. doi:10.1088/1361-6544/aa99a2
    • NLM

      Pava JA. Stability properties of solitary waves for fractional KdV and BBM equations [Internet]. Nonlinearity. 2018 ; 31( 3): 920-956.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/aa99a2
    • Vancouver

      Pava JA. Stability properties of solitary waves for fractional KdV and BBM equations [Internet]. Nonlinearity. 2018 ; 31( 3): 920-956.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/aa99a2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025