Filtros : "Mathematics of Computation" "Financiado pela FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Mathematics of Computation. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, v. 89, p. 253-278, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3445. Acesso em: 10 nov. 2025.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2020). Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, 89, 253-278. doi:10.1090/mcom/3445
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1090/mcom/3445
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1090/mcom/3445
  • Fonte: Mathematics of Computation. Unidade: IME

    Assuntos: GEOMETRIA, TEORIA DOS NÚMEROS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOLPAKOV, Alexander e ROBINS, Sinai. Spherical tetrahedra with rational volume, and spherical Pythagorean triples. Mathematics of Computation, v. 89, p. 2031-2046, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3496. Acesso em: 10 nov. 2025.
    • APA

      Kolpakov, A., & Robins, S. (2020). Spherical tetrahedra with rational volume, and spherical Pythagorean triples. Mathematics of Computation, 89, 2031-2046. doi:10.1090/mcom/3496
    • NLM

      Kolpakov A, Robins S. Spherical tetrahedra with rational volume, and spherical Pythagorean triples [Internet]. Mathematics of Computation. 2020 ; 89 2031-2046.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1090/mcom/3496
    • Vancouver

      Kolpakov A, Robins S. Spherical tetrahedra with rational volume, and spherical Pythagorean triples [Internet]. Mathematics of Computation. 2020 ; 89 2031-2046.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1090/mcom/3496
  • Fonte: Mathematics of Computation. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO ESTOCÁSTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIC, N e MARTÍNEZ, J. M. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, v. 87, n. 311, p. 1307-1326, 2018Tradução . . Disponível em: https://doi.org/10.1090/mcom/3246. Acesso em: 10 nov. 2025.
    • APA

      Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2018). On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, 87( 311), 1307-1326. doi:10.1090/mcom/3246
    • NLM

      Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1090/mcom/3246
    • Vancouver

      Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1090/mcom/3246

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025