Filtros : "Journal of Mathematical Analysis and Applications" "Financiado pelo CNPq" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES INTEGRAIS LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e SASTRE-GOMEZ, Silvia. Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124729. Acesso em: 16 nov. 2025.
    • APA

      Pereira, M. C., & Sastre-Gomez, S. (2021). Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, 495( 2), 1-21. doi:10.1016/j.jmaa.2020.124729
    • NLM

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
    • Vancouver

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 16 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e GONZALEZ, Rafael Borro e SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, v. 492, n. 2, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124467. Acesso em: 16 nov. 2025.
    • APA

      Dattori da Silva, P. L., Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin Gonzalo e SICILIANO, Gaetano. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, v. 474, n. 1, p. 544-571, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.01.063. Acesso em: 16 nov. 2025.
    • APA

      Murcia, E. G., & Siciliano, G. (2019). Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, 474( 1), 544-571. doi:10.1016/j.jmaa.2019.01.063
    • NLM

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2019.01.063
    • Vancouver

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2019.01.063
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES NÃO LINEARES, MÉTODOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS JR., J.R. e SICILIANO, Gaetano. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, v. 480, n. 2, p. 1-19, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123394. Acesso em: 16 nov. 2025.
    • APA

      Santos Jr., J. R., & Siciliano, G. (2019). On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, 480( 2), 1-19. doi:10.1016/j.jmaa.2019.123394
    • NLM

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123394
    • Vancouver

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123394
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e PEREIRA, Marcone Corrêa. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. 379-402, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.05.015. Acesso em: 16 nov. 2025.
    • APA

      Lopes, P. T. P., & Pereira, M. C. (2018). Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, 465( 1), 379-402. doi:10.1016/j.jmaa.2018.05.015
    • NLM

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
    • Vancouver

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
  • Source: Journal of Mathematical Analysis and Applications. Unidades: ICMC, IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Attractors for parabolic problems with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications, v. 207, n. 2, p. 409-461, 1997Tradução . . Disponível em: https://doi.org/10.1006/jmaa.1997.5282. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. N. de, Oliva, S. M., Pereira, A. L., & Rodriguez-Bernal, A. (1997). Attractors for parabolic problems with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications, 207( 2), 409-461. doi:10.1006/jmaa.1997.5282
    • NLM

      Carvalho AN de, Oliva SM, Pereira AL, Rodriguez-Bernal A. Attractors for parabolic problems with nonlinear boundary conditions [Internet]. Journal of Mathematical Analysis and Applications. 1997 ; 207( 2): 409-461.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1006/jmaa.1997.5282
    • Vancouver

      Carvalho AN de, Oliva SM, Pereira AL, Rodriguez-Bernal A. Attractors for parabolic problems with nonlinear boundary conditions [Internet]. Journal of Mathematical Analysis and Applications. 1997 ; 207( 2): 409-461.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1006/jmaa.1997.5282

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025