Filtros : "Journal of Mathematical Analysis and Applications" "Financiado pela CAPES" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 15 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e GONZALEZ, Rafael Borro e SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, v. 492, n. 2, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124467. Acesso em: 15 nov. 2025.
    • APA

      Dattori da Silva, P. L., Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 15 nov. 2025.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: TEORIA DAS SINGULARIDADES, SIMETRIA, INVARIANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes e LABOURIAU, Isabel Salgado e MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, v. No 2020, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124348. Acesso em: 15 nov. 2025.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin Gonzalo e SICILIANO, Gaetano. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, v. 474, n. 1, p. 544-571, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.01.063. Acesso em: 15 nov. 2025.
    • APA

      Murcia, E. G., & Siciliano, G. (2019). Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, 474( 1), 544-571. doi:10.1016/j.jmaa.2019.01.063
    • NLM

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.01.063
    • Vancouver

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.01.063
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES NÃO LINEARES, MÉTODOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS JR., J.R. e SICILIANO, Gaetano. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, v. 480, n. 2, p. 1-19, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123394. Acesso em: 15 nov. 2025.
    • APA

      Santos Jr., J. R., & Siciliano, G. (2019). On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, 480( 2), 1-19. doi:10.1016/j.jmaa.2019.123394
    • NLM

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123394
    • Vancouver

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123394

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025