Filtros : "Journal of Mathematical Analysis and Applications" "2024" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE HILBERT, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZALEZ, Karina Navarro e JORDÃO, Thaís. A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels. Journal of Mathematical Analysis and Applications, v. 534, n. 2, p. 1-17, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128121. Acesso em: 16 nov. 2025.
    • APA

      Gonzalez, K. N., & Jordão, T. (2024). A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels. Journal of Mathematical Analysis and Applications, 534( 2), 1-17. doi:10.1016/j.jmaa.2024.128121
    • NLM

      Gonzalez KN, Jordão T. A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 534( 2): 1-17.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128121
    • Vancouver

      Gonzalez KN, Jordão T. A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 534( 2): 1-17.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128121
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES, ATRATORES, MECÂNICA ESTATÍSTICA, ESPAÇOS DE SOBOLEV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e ROIDOS, Nikolaos. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, v. 531, n. 2, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127851. Acesso em: 16 nov. 2025.
    • APA

      Lopes, P. T. P., & Roidos, N. (2024). Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, 531( 2). doi:10.1016/j.jmaa.2023.127851
    • NLM

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
    • Vancouver

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: C* ÁLGEBRAS, GRUPOIDES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Quasi-invariant measures for generalized approximately proper equivalence relations. Journal of Mathematical Analysis and Applications, v. 538, n. artigo 128444, p. 1-46, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128444. Acesso em: 16 nov. 2025.
    • APA

      Bissacot, R., Exel, R., Frausino, R., & Raszeja, T. (2024). Quasi-invariant measures for generalized approximately proper equivalence relations. Journal of Mathematical Analysis and Applications, 538( artigo 128444), 1-46. doi:10.1016/j.jmaa.2024.128444
    • NLM

      Bissacot R, Exel R, Frausino R, Raszeja T. Quasi-invariant measures for generalized approximately proper equivalence relations [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 538( artigo 128444): 1-46.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128444
    • Vancouver

      Bissacot R, Exel R, Frausino R, Raszeja T. Quasi-invariant measures for generalized approximately proper equivalence relations [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 538( artigo 128444): 1-46.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128444
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: OPERADORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCK, Wolfgang e FUTORNY, Vyacheslav e NEKLYUDOV, Mikhail. A Jordan-Schwinger variant of the spectral theorem for linear operators. Journal of Mathematical Analysis and Applications, v. 531, n. artigo 127808, p. 1-11, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127808. Acesso em: 16 nov. 2025.
    • APA

      Bock, W., Futorny, V., & Neklyudov, M. (2024). A Jordan-Schwinger variant of the spectral theorem for linear operators. Journal of Mathematical Analysis and Applications, 531( artigo 127808), 1-11. doi:10.1016/j.jmaa.2023.127808
    • NLM

      Bock W, Futorny V, Neklyudov M. A Jordan-Schwinger variant of the spectral theorem for linear operators [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( artigo 127808): 1-11.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127808
    • Vancouver

      Bock W, Futorny V, Neklyudov M. A Jordan-Schwinger variant of the spectral theorem for linear operators [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( artigo 127808): 1-11.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127808
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, v. 537, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128316. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, A. C., & Manfio, F. (2024). Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, 537, 1-13. doi:10.1016/j.jmaa.2024.128316
    • NLM

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
    • Vancouver

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MÉTODOS DE PERTURBAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Gustavo de Paula. Concentrated solutions to the Schrödinger-Bopp-Podolsky system with a positive potential. Journal of Mathematical Analysis and Applications, v. 535, n. 1, p. 1-25, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128098. Acesso em: 16 nov. 2025.
    • APA

      Ramos, G. de P. (2024). Concentrated solutions to the Schrödinger-Bopp-Podolsky system with a positive potential. Journal of Mathematical Analysis and Applications, 535( 1), 1-25. doi:10.1016/j.jmaa.2024.128098
    • NLM

      Ramos G de P. Concentrated solutions to the Schrödinger-Bopp-Podolsky system with a positive potential [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 535( 1): 1-25.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128098
    • Vancouver

      Ramos G de P. Concentrated solutions to the Schrödinger-Bopp-Podolsky system with a positive potential [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 535( 1): 1-25.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128098
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ESPAÇOS DE BESOV

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces. Journal of Mathematical Analysis and Applications, v. 531, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127840. Acesso em: 16 nov. 2025.
    • APA

      Silva, E. R. da. (2024). Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces. Journal of Mathematical Analysis and Applications, 531( 2), 1-12. doi:10.1016/j.jmaa.2023.127840
    • NLM

      Silva ER da. Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2): 1-12.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127840
    • Vancouver

      Silva ER da. Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2): 1-12.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127840
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e SIQUEIRA, J. On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, v. 540, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128622. Acesso em: 16 nov. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Siqueira, J. (2024). On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, 540( 2), 1-12. doi:10.1016/j.jmaa.2024.128622
    • NLM

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
    • Vancouver

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025