Filtros : "Journal of Mathematical Analysis and Applications" "SOARES, SÉRGIO HENRIQUE MONARI" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson A e SOARES, Sérgio Henrique Monari. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. Journal of Mathematical Analysis and Applications, v. 428, n. 2, p. 1035-1053, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.03.030. Acesso em: 16 nov. 2025.
    • APA

      Santos, J. A., & Soares, S. H. M. (2015). Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. Journal of Mathematical Analysis and Applications, 428( 2), 1035-1053. doi:10.1016/j.jmaa.2015.03.030
    • NLM

      Santos JA, Soares SHM. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 2): 1035-1053.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.030
    • Vancouver

      Santos JA, Soares SHM. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 2): 1035-1053.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.030
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIMENTA, Marcos T. O e SOARES, Sérgio Henrique Monari. Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, v. 390, n. ju 2012, p. 274-289, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2012.01.039. Acesso em: 16 nov. 2025.
    • APA

      Pimenta, M. T. O., & Soares, S. H. M. (2012). Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, 390( ju 2012), 274-289. doi:10.1016/j.jmaa.2012.01.039
    • NLM

      Pimenta MTO, Soares SHM. Existence and concentration of solutions for a class of biharmonic equations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 390( ju 2012): 274-289.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2012.01.039
    • Vancouver

      Pimenta MTO, Soares SHM. Existence and concentration of solutions for a class of biharmonic equations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 390( ju 2012): 274-289.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2012.01.039
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e SOUTO, Marco Aurélio Soares e SOARES, Sérgio Henrique Monari. Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition. Journal of Mathematical Analysis and Applications, v. 377, n. 2, p. 584-592, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2010.11.031. Acesso em: 16 nov. 2025.
    • APA

      Alves, C. O., Souto, M. A. S., & Soares, S. H. M. (2011). Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition. Journal of Mathematical Analysis and Applications, 377( 2), 584-592. doi:10.1016/j.jmaa.2010.11.031
    • NLM

      Alves CO, Souto MAS, Soares SHM. Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 377( 2): 584-592.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2010.11.031
    • Vancouver

      Alves CO, Souto MAS, Soares SHM. Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 377( 2): 584-592.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2010.11.031

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025