Existence and concentration of solutions for a class of biharmonic equations (2012)
- Authors:
- Autor USP: SOARES, SÉRGIO HENRIQUE MONARI - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jmaa.2012.01.039
- Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Mathematical Analysis and Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 390, n. 1, p. 274-289, jun. 2012
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PIMENTA, Marcos T. O e SOARES, Sérgio Henrique Monari. Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, v. 390, n. ju 2012, p. 274-289, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2012.01.039. Acesso em: 03 fev. 2026. -
APA
Pimenta, M. T. O., & Soares, S. H. M. (2012). Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, 390( ju 2012), 274-289. doi:10.1016/j.jmaa.2012.01.039 -
NLM
Pimenta MTO, Soares SHM. Existence and concentration of solutions for a class of biharmonic equations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 390( ju 2012): 274-289.[citado 2026 fev. 03 ] Available from: https://doi.org/10.1016/j.jmaa.2012.01.039 -
Vancouver
Pimenta MTO, Soares SHM. Existence and concentration of solutions for a class of biharmonic equations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 390( ju 2012): 274-289.[citado 2026 fev. 03 ] Available from: https://doi.org/10.1016/j.jmaa.2012.01.039 - Existence of solution for a class of quasilinear systems
- Odd homoclinic orbits for a second order Hamiltonian system
- Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity
- On existence and concentration of solutions for a class of Hamiltonian systems in 'R POT.N'
- Singular Hamiltonian elliptic systems with critical exponential growth in dimension two
- On a Hamiltonian system with critical exponential growth
- Soliton solutions for quasilinear Schrödinger equations with critical growth
- A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces
- A sign-changing solution for the Schrödinger-Poisson equation in 'R POT.3'
- Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field
Informações sobre o DOI: 10.1016/j.jmaa.2012.01.039 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
